scholarly journals ORCHIDEE-SOM: Modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

2017 ◽  
Author(s):  
Marta Camino-Serrano ◽  
Bertrand Guenet ◽  
Sebastiaan Luyssaert ◽  
Philippe Ciais ◽  
Vladislav Bastrikov ◽  
...  

Abstract. Current Land Surface Models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. These common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to two meters. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on- and desorption from soil minerals, diffusion of SOC and DOC and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth- dependent parameterization of the new input model parameters, such as the decomposition times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global warming.

2018 ◽  
Vol 11 (3) ◽  
pp. 937-957 ◽  
Author(s):  
Marta Camino-Serrano ◽  
Bertrand Guenet ◽  
Sebastiaan Luyssaert ◽  
Philippe Ciais ◽  
Vladislav Bastrikov ◽  
...  

Abstract. Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global warming.


2018 ◽  
Author(s):  
Marwa Tifafi ◽  
Marta Camino-Serrano ◽  
Christine Hatté ◽  
Hector Morras ◽  
Lucas Moretti ◽  
...  

Abstract. Despite the importance of soil as a large component of the terrestrial ecosystems, the soil compartments are not well represented in the Land Surface Models (LSMs). Indeed, soils in current LSMs are generally represented based on a very simplified schema that can induce a misrepresentation of the deep dynamics of soil carbon. Here, we present a new version of the IPSL-Land Surface Model called ORCHIDEE-SOM, incorporating the 14C dynamic in the soil. ORCHIDEE-SOM, first, simulates soil carbon dynamics for different layers, down to 2 m depth. Second, concentration of dissolved organic carbon (DOC) and its transport are modeled. Finally, soil organic carbon (SOC) decomposition is considered taking into account the priming effect. After implementing the 14C in the soil module of the model, we evaluated model outputs against observations of soil organic carbon and 14C activity (F14C) for different sites with different characteristics. The model managed to reproduce the soil organic carbon stocks and the F14C along the vertical profiles. However, an overestimation of the total carbon stock was noted, but was mostly marked on the surface. Then, thanks to the introduction of 14C, it has been possible to highlight an underestimation of the age of carbon in the soil. Thereafter, two different tests on this new version have been established. The first was to increase carbon residence time of the passive pool and decrease the flux from the slow pool to the passive pool. The second was to establish an equation of diffusion, initially constant throughout the profile, making it vary exponentially as a function of depth. The first modifications did not improve the capacity of the model to reproduce observations whereas the second test showed a decrease of the soil carbon stock overestimation, especially at the surface and an improvement of the estimates of the carbon age. This assumes that we should focus more on vertical variation of soil parameters as a function of depth, mainly for diffusion, in order to upgrade the representation of global carbon cycle in LSMs, thereby helping to improve predictions of the future response of soil organic carbon to global warming.


2018 ◽  
Vol 11 (12) ◽  
pp. 4711-4726 ◽  
Author(s):  
Marwa Tifafi ◽  
Marta Camino-Serrano ◽  
Christine Hatté ◽  
Hector Morras ◽  
Lucas Moretti ◽  
...  

Abstract. Despite the importance of soil as a large component of the terrestrial ecosystem, the soil compartments are not well represented in land surface models (LSMs). Indeed, soils in current LSMs are generally represented based on a very simplified schema that can induce a misrepresentation of the deep dynamics of soil carbon. Here, we present a new version of the Institut Pierre Simon Laplace (IPSL) LSM called ORCHIDEE-SOM (ORganizing Carbon and Hydrology in Dynamic EcosystEms-Soil Organic Matter), incorporating the 14C dynamics into the soil. ORCHIDEE-SOM first simulates soil carbon dynamics for different layers, down to 2 m depth. Second, concentration of dissolved organic carbon and its transport are modelled. Finally, soil organic carbon decomposition is considered taking into account the priming effect. After implementing 14C in the soil module of the model, we evaluated model outputs against observations of soil organic carbon and modern 14C fraction (F14C) for different sites with different characteristics. The model managed to reproduce the soil organic carbon stocks and the F14C along the vertical profiles for the sites examined. However, an overestimation of the total carbon stock was noted, primarily on the surface layer. Due to 14C, it is possible to probe carbon age in the soil, which was found to be underestimated. Thereafter, two different tests on this new version have been established. The first was to increase carbon residence time of the passive pool and decrease the flux from the slow pool to the passive pool. The second was to establish an equation of diffusion, initially constant throughout the profile, making it vary exponentially as a function of depth. The first modifications did not improve the capacity of the model to reproduce observations, whereas the second test improved both estimation of surface soil carbon stock as well as soil carbon age. This demonstrates that we should focus more on vertical variation in soil parameters as a function of depth, in order to upgrade the representation of the global carbon cycle in LSMs, thereby helping to improve predictions of the of soil organic carbon to environmental changes.


2018 ◽  
Vol 11 (2) ◽  
pp. 593-609 ◽  
Author(s):  
Mahdi Nakhavali ◽  
Pierre Friedlingstein ◽  
Ronny Lauerwald ◽  
Jing Tang ◽  
Sarah Chadburn ◽  
...  

Abstract. Current global models of the carbon (C) cycle consider only vertical gas exchanges between terrestrial or oceanic reservoirs and the atmosphere, thus not considering the lateral transport of carbon from the continents to the oceans. Therefore, those models implicitly consider all of the C which is not respired to the atmosphere to be stored on land and hence overestimate the land C sink capability. A model that represents the whole continuum from atmosphere to land and into the ocean would provide a better understanding of the Earth's C cycle and hence more reliable historical or future projections. A first and critical step in that direction is to include processes representing the production and export of dissolved organic carbon in soils. Here we present an original representation of dissolved organic C (DOC) processes in the Joint UK Land Environment Simulator (JULES-DOCM) that integrates a representation of DOC production in terrestrial ecosystems based on the incomplete decomposition of organic matter, DOC decomposition within the soil column, and DOC export to the river network via leaching. The model performance is evaluated in five specific sites for which observations of soil DOC concentration are available. Results show that the model is able to reproduce the DOC concentration and controlling processes, including leaching to the riverine system, which is fundamental for integrating terrestrial and aquatic ecosystems. Future work should include the fate of exported DOC in the river system as well as DIC and POC export from soil.


Agriculture ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 181 ◽  
Author(s):  
Deb Aryal ◽  
Danilo Morales Ruiz ◽  
César Tondopó Marroquín ◽  
René Pinto Ruiz ◽  
Francisco Guevara Hernández ◽  
...  

Land use change from forests to grazing lands is one of the important sources of greenhouse gas emissions in many parts of the tropics. The objective of this study was to analyze the extent of soil organic carbon (SOC) loss from the conversion of native forests to pasturelands in Mexico. We analyzed 66 sets of published research data with simultaneous measurements of soil organic carbon stocks between native forests and pasturelands in Mexico. We used a generalized linear mixed effect model to evaluate the effect of land use change (forest versus pasture), soil depth, and original native forest types. The model showed that there was a significant reduction in SOC stocks due to the conversion of native forests to pasturelands. The median loss of SOC ranged from 31.6% to 52.0% depending upon the soil depth. The highest loss was observed in tropical mangrove forests followed by highland tropical forests and humid tropical forests. Higher loss was detected in upper soil horizon (0–30 cm) compared to deeper horizons. The emissions of CO2 from SOC loss ranged from 46.7 to 165.5 Mg CO2 eq. ha−1 depending upon the type of original native forests. In this paper, we also discuss the effect that agroforestry practices such as silvopastoral arrangements and other management practices like rotational grazing, soil erosion control, and soil nutrient management can have in enhancing SOC stocks in tropical grasslands. The results on the degree of carbon loss can have strong implications in adopting appropriate management decisions that recover or retain carbon stocks in biomass and soils of tropical livestock production systems.


2018 ◽  
Vol 83 (6) ◽  
pp. 785-793 ◽  
Author(s):  
Ayaz Mehmood ◽  
Mohammad Akhtar ◽  
Shah Rukh ◽  
Muhammad Imran ◽  
Asma Hassan ◽  
...  

Anthropogenic activities, urbanization and industrialization cause an increase in the atmospheric carbon dioxide. Current focus of the soil scientists and the environmentalists is to quantify the carbon stocks and its flow in the agroecological system which is one of the main causes of global warming and climate change. The information on the distribution of soil organic carbon (SOC) stocks in the soil profiles in relation with changing climate is barely sufficient. Objective of this study was to quantify the effect of climate and land on the equilibrium of SOC stocks in soil profiles with development. Murree soil series (Typic Hapludolls) in humid climate and under coniferous forest, and Tirnul soil series (Typic Haplustepts) in semiarid climate under cultivation, were selected. Triplicate soil profiles were selected for each of the soils and sampled at genetic horizons level. Cumulative SOC stocks in Typic Hapludolls soil profiles (95 Mg ha-1) were significantly greater than Typic Haplustepts (30 Mg ha-1). The Typic Hapludolls had significantly greater SOC stock at each horizon level under humid climate. This research concludes that soils under forest and humid climate had higher SOC stocks as compared to the soils under semiarid climate and cultivation.


2015 ◽  
Vol 9 (6) ◽  
pp. 6733-6790
Author(s):  
B. Decharme ◽  
E. Brun ◽  
A. Boone ◽  
C. Delire ◽  
P. Le Moigne ◽  
...  

Abstract. In this study we analysed how an improved representation of snowpack processes and soil properties in the multi-layer snow and soil schemes of the ISBA land surface model impacts the simulation of soil temperature profiles over North-Eurasian regions. For this purpose, we refine ISBA's snow layering algorithm and propose a parameterization of snow albedo and snow compaction/densification adapted from the detailed Crocus snowpack model. We also include a dependency on soil organic carbon content for ISBA's hydraulic and thermal soil properties. First, changes in the snowpack parameterization are evaluated against snow depth, snow water equivalent, surface albedo, and soil temperature at a 10 cm depth observed at the Col de Porte field site in the French Alps. Next, the new model version including all of the changes is used over Northern-Eurasia to evaluate the model's ability to simulate the snow depth, the soil temperature profile and the permafrost characteristics. The results confirm that an adequate simulation of snow layering and snow compaction/densification significantly impacts the snowpack characteristics and the soil temperature profile during winter, while the impact of the more accurate snow albedo computation is dominant during the spring. In summer, the accounting for the effect of soil organic carbon on hydraulic and thermal soil properties improves the simulation of the soil temperature profile. Finally, the results confirm that this last process strongly influences the simulation of the permafrost active layer thickness and its spatial distribution.


2019 ◽  
Vol 12 (8) ◽  
pp. 3503-3521 ◽  
Author(s):  
Simon P. K. Bowring ◽  
Ronny Lauerwald ◽  
Bertrand Guenet ◽  
Dan Zhu ◽  
Matthieu Guimberteau ◽  
...  

Abstract. Few Earth system models adequately represent the unique permafrost soil biogeochemistry and its respective processes; this significantly contributes to uncertainty in estimating their responses, and that of the planet at large, to warming. Likewise, the riverine component of what is known as the “boundless carbon cycle” is seldom recognised in Earth system modelling. The hydrological mobilisation of organic material from a ∼1330–1580 PgC carbon stock to the river network results in either sedimentary settling or atmospheric “evasion”, processes widely expected to increase with amplified Arctic climate warming. Here, the production, transport, and atmospheric release of dissolved organic carbon (DOC) from high-latitude permafrost soils into inland waters and the ocean are explicitly represented for the first time in the land surface component (ORCHIDEE) of a CMIP6 global climate model (Institut Pierre Simon Laplace – IPSL). The model, ORCHIDEE MICT-LEAK, which represents the merger of previously described ORCHIDEE versions MICT and LEAK, mechanistically represents (a) vegetation and soil physical processes for high-latitude snow, ice, and soil phenomena and (b) the cycling of DOC and CO2, including atmospheric evasion, along the terrestrial–aquatic continuum from soils through the river network to the coast at 0.5 to 2∘ resolution. This paper, the first in a two-part study, presents the rationale for including these processes in a high-latitude-specific land surface model, then describes the model with a focus on novel process implementations, followed by a summary of the model configuration and simulation protocol. The results of these simulation runs, conducted for the Lena River basin, are evaluated against observational data in the second part of this study.


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 351-365 ◽  
Author(s):  
M. Köchy ◽  
R. Hiederer ◽  
A. Freibauer

Abstract. The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD's bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm−3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of −56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".


Soil Research ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 12 ◽  
Author(s):  
Warwick Badgery ◽  
Brian Murphy ◽  
Annette Cowie ◽  
Susan Orgill ◽  
Andrew Rawson ◽  
...  

Increasing soil organic carbon (SOC) in Australian farming systems has the potential to offset greenhouse gas emissions. Even though methods for soil carbon (C) sequestration have been developed under the Australian Government’s Emissions Reduction Fund, the scope for farm-scale soil C sequestration is poorly understood. A pilot scheme was developed in Central West New South Wales to trial the use of a market-based instrument to encourage farmers to change farm management to increase SOC. This paper reports changes to SOC stocks measured on farms that were successfully contracted in the pilot. The 10 contracted farms were those that submitted the lowest bid per Mg CO2-e. Four land uses were contracted in the pilot: (1) reduced tillage cropping (reference); (2) reduced tillage cropping with organic amendments (e.g. biosolids or compost); (3) conversion from cropping land to permanent pasture; and (4) conversion from cropping land to permanent pasture with organic amendments. At each site a minimum of 10 locations (sampling points) were sampled and analysed for total carbon (LECO elemental analyser) and bulk density calculated. The SOC stocks (0–0.3 m) were assessed before (2012) and after the pilot (2017; calculated on equivalent soil mass of 2012), with 60% of sites showing a significant increase. Pasture had a higher rate of SOC sequestration than reduced tillage cropping (1.2 vs 0.28 Mg C ha–1 year–1, 0–0.3 m); and organic amendments had higher rates of SOC sequestration than without (1.14 vs 0.78 Mg C ha–1 year–1, 0–0.3 m). The results of the pilot demonstrated increases in SOC, using quantification methods consistent with the current Measurement Method of the Australian Government’s Emissions Reduction Fund policy used to generate Australian Carbon Credit Units. The results require careful interpretation as rates of sequestration are likely to be lower in the longer term than initial rates of change seen in this pilot (five years), and the pilot intentionally selected sites with initially low SOC, which ensured a greater opportunity to sequester SOC.


Sign in / Sign up

Export Citation Format

Share Document