scholarly journals Supplementary material to "Discrete k-nearest neighbor resampling for simulating multisite precipitation occurrence and adaption to climate change"

Author(s):  
Taesam Lee ◽  
Vijay P. Singh
2018 ◽  
Author(s):  
Taesam Lee ◽  
Vijay P. Singh

Abstract. Stochastic weather simulation models are commonly employed in water resources management and agricultural applications. The data simulated by these models, such as precipitation, temperature, and wind, are used as input for hydrological and agricultural models. Stochastic simulation of multisite precipitation occurrence is a challenge because of its intermittent characteristics as well as spatial and temporal cross-correlation. Employing a nonparametric technique, k-nearest neighbor resampling (KNNR), and coupling it with Genetic Algorithm (GA), this study proposes a novel simulation method for multisite precipitation occurrence. The proposed discrete version of KNNR (DKNNR) model is compared with an existing parametric model, called multisite occurrence model with standard normal variate (MONR). The datasets simulated from both the DKNNR model and the MONR model are tested using a number of statistics, such as occurrence and transition probabilities as well as temporal and spatial cross-correlations. Results show that the proposed DKNNR model can be a good alternative for simulating multisite precipitation occurrence. We also tested the model capability to adapt climate change. It is shown that the model is capable but further improvement is required to have specific variations of the occurrence probability due to climate change. Combining with the generated occurrence, the multisite precipitation amount can then be simulated by any multisite amount model.


2019 ◽  
Vol 12 (3) ◽  
pp. 1189-1207 ◽  
Author(s):  
Taesam Lee ◽  
Vijay P. Singh

Abstract. Stochastic weather simulation models are commonly employed in water resources management, agricultural applications, forest management, transportation management, and recreational activities. Stochastic simulation of multisite precipitation occurrence is a challenge because of its intermittent characteristics as well as spatial and temporal cross-correlation. This study proposes a novel simulation method for multisite precipitation occurrence employing a nonparametric technique, the discrete version of the k-nearest neighbor resampling (KNNR), and couples it with a genetic algorithm (GA). Its modification for the study of climatic change adaptation is also tested. The datasets simulated from both the discrete KNNR (DKNNR) model and an existing traditional model were evaluated using a number of statistics, such as occurrence and transition probabilities, as well as temporal and spatial cross-correlations. Results showed that the proposed DKNNR model with GA-simulated multisite precipitation occurrence preserved the lagged cross-correlation between sites, while the existing conventional model was not able to reproduce lagged cross-correlation between stations, so long stochastic simulation was required. Also, the GA mixing process provided a number of new patterns that were different from observations, which was not feasible with the sole DKNNR model. When climate change was considered, the model performed satisfactorily, but further improvement is required to more accurately simulate specific variations of the occurrence probability.


Author(s):  
M. Jeyanthi ◽  
C. Velayutham

In Science and Technology Development BCI plays a vital role in the field of Research. Classification is a data mining technique used to predict group membership for data instances. Analyses of BCI data are challenging because feature extraction and classification of these data are more difficult as compared with those applied to raw data. In this paper, We extracted features using statistical Haralick features from the raw EEG data . Then the features are Normalized, Binning is used to improve the accuracy of the predictive models by reducing noise and eliminate some irrelevant attributes and then the classification is performed using different classification techniques such as Naïve Bayes, k-nearest neighbor classifier, SVM classifier using BCI dataset. Finally we propose the SVM classification algorithm for the BCI data set.


2020 ◽  
Vol 17 (1) ◽  
pp. 319-328
Author(s):  
Ade Muchlis Maulana Anwar ◽  
Prihastuti Harsani ◽  
Aries Maesya

Population Data is individual data or aggregate data that is structured as a result of Population Registration and Civil Registration activities. Birth Certificate is a Civil Registration Deed as a result of recording the birth event of a baby whose birth is reported to be registered on the Family Card and given a Population Identification Number (NIK) as a basis for obtaining other community services. From the total number of integrated birth certificate reporting for the 2018 Population Administration Information System (SIAK) totaling 570,637 there were 503,946 reported late and only 66,691 were reported publicly. Clustering is a method used to classify data that is similar to others in one group or similar data to other groups. K-Nearest Neighbor is a method for classifying objects based on learning data that is the closest distance to the test data. k-means is a method used to divide a number of objects into groups based on existing categories by looking at the midpoint. In data mining preprocesses, data is cleaned by filling in the blank data with the most dominating data, and selecting attributes using the information gain method. Based on the k-nearest neighbor method to predict delays in reporting and the k-means method to classify priority areas of service with 10,000 birth certificate data on birth certificates in 2019 that have good enough performance to produce predictions with an accuracy of 74.00% and with K = 2 on k-means produces a index davies bouldin of 1,179.


Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


Sign in / Sign up

Export Citation Format

Share Document