scholarly journals SHaKTI: Subglacial Hydrology and Kinetic Transient Interactions v1.0

2018 ◽  
Author(s):  
Aleah Sommers ◽  
Harihar Rajaram ◽  
Mathieu Morlighem

Abstract. Subglacial hydrology has a significant influence on ice sheet dynamics, yet remains poorly understood. Complex feedbacks play out between the liquid water and the ice, with constantly changing drainage geometry and flow mechanics. A clear tradition has been established in the subglacial hydrology modeling literature of distinguishing between channelized (efficient) and distributed (inefficient) drainage systems or components. Imposing a distinction that changes the governing physics under different flow regimes, however, may not allow for the full array of drainage characteristics to arise. Here, we present a new subglacial hydrology model: SHaKTI (Subglacial Hydrology and Kinetic Transient Interactions). In this model formulation, a single set of governing equations is applied over the entire domain, with a spatially and temporally varying transmissivity that allows for representation of the wide transition between turbulent and laminar flow, and the geometry of each element is allowed to evolve accordingly to form sheet and channel configurations. The model is implemented as a solution in the Ice Sheet System Model (ISSM). We include steady and transient examples to demonstrate features and capabilities of the model, and we are able to reproduce seasonal behavior of the subglacial water pressure that is consistent with observed seasonal velocity behavior in many Greenland outlet glaciers, supporting the notion that subglacial hydrology may be a key influencer in shaping these patterns.

2018 ◽  
Vol 11 (7) ◽  
pp. 2955-2974 ◽  
Author(s):  
Aleah Sommers ◽  
Harihar Rajaram ◽  
Mathieu Morlighem

Abstract. Subglacial hydrology has a strong influence on glacier and ice sheet dynamics, particularly through the dependence of sliding velocity on subglacial water pressure. Significant challenges are involved in modeling subglacial hydrology, as the drainage geometry and flow mechanics are constantly changing, with complex feedbacks that play out between water and ice. A clear tradition has been established in the subglacial hydrology modeling literature of distinguishing between channelized (efficient) and sheetlike (inefficient or distributed) drainage systems or components and using slightly different forms of the governing equations in each subsystem to represent the dominant physics. Specifically, many previous subglacial hydrology models disregard opening by melt in the sheetlike system or redistribute it to adjacent channel elements in order to avoid runaway growth that occurs when it is included in the sheetlike system. We present a new subglacial hydrology model, SHAKTI (Subglacial Hydrology and Kinetic, Transient Interactions), in which a single set of governing equations is used everywhere, including opening by melt in the entire domain. SHAKTI employs a generalized relationship between the subglacial water flux and the hydraulic gradient that allows for the representation of laminar, turbulent, and transitional regimes depending on the local Reynolds number. This formulation allows for the coexistence of these flow regimes in different regions, and the configuration and geometry of the subglacial system evolves naturally to represent sheetlike drainage as well as systematic channelized drainage under appropriate conditions. We present steady and transient example simulations to illustrate the features and capabilities of the model and to examine sensitivity to mesh size and time step size. The model is implemented as part of the Ice Sheet System Model (ISSM).


2021 ◽  
Author(s):  
Paul Halas ◽  
Jeremie Mouginot ◽  
Basile de Fleurian ◽  
Petra Langebroek

<div> <p>Ice losses from the Greenland Ice Sheet have been increasing in the last two decades, leading to a larger contribution to the global sea level rise. Roughly 40% of the contribution comes from ice-sheet dynamics, mainly regulated by basal sliding. The sliding component of glaciers has been observed to be strongly related to surface melting, as water can eventually reach the bed and impact the subglacial water pressure, affecting the basal sliding.  </p> </div><div> <p>The link between ice velocities and surface melt on multi-annual time scale is still not totally understood even though it is of major importance with expected increasing surface melting. Several studies showed some correlation between an increase in surface melt and a slowdown in velocities, but there is no consensus on those trends. Moreover those investigations only presented results in a limited area over Southwest Greenland.  </p> </div><div> <p>Here we present the ice motion over many land-terminating glaciers on the Greenland Ice Sheet for the period 2000 - 2020. This type of glacier is ideal for studying processes at the interface between the bed and the ice since they are exempted from interactions with the sea while still being relevant for all glaciers since they share the same basal friction laws. The velocity data was obtained using optical Landsat 7 & 8 imagery and feature-tracking algorithm. We attached importance keeping the starting date of our image pairs similar, and avoided stacking pairs starting before and after melt seasons, resulting in multiple velocity products for each year.  </p> </div><div> <p>Our results show similar velocity trends for previously studied areas with a slowdown until 2012 followed by an acceleration. This trend however does not seem to be observed on the whole ice sheet and is probably specific to this region’s climate forcing. </p> </div><div> <p>Moreover comparison between ice velocities from different parts of Greenland allows us to observe the impact of different climatic trends on ice dynamics.</p> </div>


2020 ◽  
Author(s):  
Emma Lewington ◽  
Stephen Livingstone ◽  
Chris Clark ◽  
Andrew Sole ◽  
Robert Storrar

<p>Despite being widely studied, subglacial meltwater landforms are typically mapped and investigated individually, thus the drainage system as a whole remains poorly understood. Here, we identify and map all visible traces of subglacial meltwater flow across the Keewatin sector of the former Laurentide Ice Sheet from the ArcticDEM, generating significant new insights into the connectedness of the drainage system.</p><p>Due to similarities in spacing, morphometry and spatial location, we suggest that the 100s-1000s m wide features often flanking and connecting sections of eskers (i.e. tunnel valleys, meltwater tracks and esker splays) are varying expressions of the same phenomena and collectively term these features ‘meltwater corridors’. Based on observations from contemporary ice masses, we propose a new formation model based on the pressure fluctuations surrounding a central conduit, in which the esker records the imprint of the central conduit and the wider meltwater corridors the interactions with the surrounding distributed drainage system, or variable pressure axis (VPA).</p><p>We suggest that the widespread aerial coverage of meltwater corridors across the Keewatin sector provides constraints on the extent of basal uncoupling induced by basal water pressure fluctuation and variations in spatial distribution and evolution of the subglacial drainage system, which have important implications for ice sheet dynamics. </p>


2015 ◽  
Vol 32 (2) ◽  
pp. 79-90
Author(s):  
Joanna Rychel ◽  
Barbara Woronko ◽  
Mirosław T. Karasiewicz ◽  
Paweł Szymczuk ◽  
Marcin Morawski

Abstract The paper presents a research on a marginal zone near Knyszewicze in the southern part of Sokółka Hills (northeastern Poland). Terminal moraine hills are arranged amphitheatrically in a lobal pattern. Dynamics of the Knyszewicze frontal ice-sheet lobe during the Saale Glaciation and successive stages of the marginal zone near the village of Knyszewicze were reconstructed based on sedimentary and geomorphological analysis, using a digital elevation model and morpholineaments. Three main phases of the Knyszewicze glacial-lobe activity were identified including accumulation of glaciofluvial deposits, advances of the ice margin and ice-lobe retreat. Moraine hills developed at a stable ice-lobe terminus, initially as short end-moraine fans with the following sequence of lithofacies Gh⇒SGh⇒Sh or Gm⇒Gh⇒Sh. Such a sequence indicates cyclic sheet-floods. During a small but dynamic advance of the ice sheet terminus, these deposits were moved forward and monoclinally folded, then furrowed with sloping faults due to horizontal pressure. Typical thrust-block push moraines developed in this way. Ice sheet advance took place when permafrost was present in the substratum and very high water pressure occurred at glacial terminus. Inside a lobal configuration of moraines, there is a rich inventory of glacial forms with a classic terminal depression in the central part. Based on this landform pattern, their shape, rhythm and glaciotectonic disturbances, the land relief may be referred to as a hill-hole pair. The structure of Horczaki Knoll, deposited on the sub-Quaternary tectonic structure, significantly contributed to a development of this marginal zone.


2006 ◽  
Vol 52 (179) ◽  
pp. 497-527 ◽  
Author(s):  
Geoffrey Boulton ◽  
Sergei Zatsepin

AbstractA sedimentary sequence of till overlying a gravel aquifer was instrumented with water-pressure transducers prior to a small, anticipated surge of the margin of the glacier Breiðamerkurjökull in Iceland. The records of water pressure at each transducer site show a well-defined temporal sequence of hydraulic regimes that reflect the changing recharge of surface-derived meltwater, the pressure drop along the drainage pathway and the pattern of ice loading. The poroelastic and water-pressure response of glacially overridden sediments to the recharge rate is determined in the frequency domain through an analytic solution. This permits the in situ conductivity, compressibility and consolidation states of subglacial sediments to be derived, and reveals aquifer-scale compressibility that produces an important water-pressure wave associated with the advancing glacier. The model is then used to explore how varying conductivity/compressibility, largely determined by granulometry, can determine drainage states and instabilities that may have a large impact on glacier/ice-sheet dynamics, and how the drainage time of surface water to the bed can determine the frequency response of subglacial groundwater regimes and their influence on subglacial sediment stability. Mismatches between model predictions and specific events in water-pressure records are used to infer processes that are not incorporated in the model: hydrofracturing that changes the hydraulic properties of subglacial sediments; the impact on groundwater pressure of subglacial channel formation; upwelling beyond the glacier margin; and rapid variations in the state of consolidation. The poroelastic model also suggests how seismic methods can be developed further to monitor hydraulic conditions at the base of an ice sheet or glacier.


2020 ◽  
Vol 109 (8) ◽  
pp. 2699-2717
Author(s):  
Robert J. Sokołowski ◽  
Wojciech Wysota

Abstract We reconstruct patterns of subglacial processes on a hard bedrock and a soft bed under the southern sector of Scandinavian Ice Sheet (SIS) occurring in the basal till of the Late Saalian Glaciation at the Wapienno, Barcin and Młodocin sites (north-central Poland). Based on detailed sedimentological studies, two phases of SIS transgression were recognised. In the initial phase of the transgression, the SIS advanced onto a frozen substrate (continuous permafrost). The low permeability of the substratum led to a high subglacial water pressure (SWP) and increased basal sliding. The local increase of SWP led to the development of different types of structures and sediments. On a hard bedrock, with low SWP, abrasion predominated and linear structures were developing, while in the case of high SWP, the ice was decoupled from the hard substrate, pressurised liquefied sediment flowed, and structures of the p-form and s-form type developed. On a soft bed, the ice-bed contact was of a mosaic type and the ice movement had an ice-stream character. The ice-stream developed towards the east in the marginal zone of the SIS and used a W-E oriented valley filled by the Wapienno Formation fluvial complex. During a later phase, the ice movement was slower and did not have a stream character. Its direction changed to SE. The deposition of the main part of the diamicton occurred mainly as a result of the lodgement process.


2015 ◽  
Vol 121 ◽  
pp. 36-51 ◽  
Author(s):  
Aage Paus ◽  
Sanne Boessenkool ◽  
Christian Brochmann ◽  
Laura Saskia Epp ◽  
Derek Fabel ◽  
...  

Author(s):  
T. M Kyrke-Smith ◽  
R. F Katz ◽  
A. C Fowler

Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice–water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model.


2010 ◽  
Vol 56 (198) ◽  
pp. 601-613 ◽  
Author(s):  
Ian M. Howat ◽  
Jason E. Box ◽  
Yushin Ahn ◽  
Adam Herrington ◽  
Ellyn M. McFadden

AbstractRecent studies indicate that the dynamics of fast-flowing, marine-terminating outlet glaciers of the Greenland ice sheet may be sensitive to climate and ocean forcing on sub-annual timescales. Observations of seasonal behavior of these glaciers at such high temporal resolution, however, are currently few. Here we present observations of front position, flow speed, near-surface air temperature and ocean conditions for six large marine-terminating glaciers in the Uummannaq region of West Greenland, to investigate controls on short-term glacier dynamics. As proposed by other studies, we find that seasonal front advance and retreat correlates with the formation and disappearance of an ice melange. Our data suggest that high sea-surface temperature, anomalously low sea-ice concentration and reduced melange formation in early 2003 have triggered multi-year retreat of several glaciers in the study area, which is consistent with other regions in Greenland. Of the stable glaciers, only Rink Isbræ exhibits a seasonal speed variation that correlates with variations in front position, with the others undergoing mid-summer deceleration that indicates the effects of subglacial meltwater discharge and drainage system evolution. Drainage of supraglacial lakes and water-filled crevasses results in substantial decreases in speed (40–60%) on fast-flowing glaciers. Our results demonstrate that attempts to model ice-sheet evolution must take into account short-timescale flow dynamics resulting from drainage events and oceanographic conditions.


Sign in / Sign up

Export Citation Format

Share Document