scholarly journals Observations for Model Intercomparison Project (Obs4MIPs): Status for CMIP6

Author(s):  
Duane Waliser ◽  
Peter J. Gleckler ◽  
Robert Ferraro ◽  
Karl E. Taylor ◽  
Sasha Ames ◽  
...  

Abstract. The Observations for Model Intercomparison Projects (Obs4MIPs) was initiated in 2010 to facilitate the use of observations in climate model evaluation and research, with a particular target being the Coupled Model Intercomparison Project (CMIP), a major initiative of the World Climate Research Programme (WCRP). To this end, Obs4MIPs: 1) targets observed variables that can be compared to CMIP model variables, 2) utilizes dataset formatting specifications and metadata requirements closely aligned with CMIP model output, 3) provides brief technical documentation for each dataset, designed for non-experts and tailored towards relevance for model evaluation, including information on uncertainty, dataset merits and limitations, and 4) disseminates the data through the Earth System Grid Federation (ESGF) platforms, making the observations searchable and accessible via the same portals as the model output. Taken together, these characteristics of the organization and structure of obs4MIPs should entice a more diverse community of researchers to engage in the comparison of model output with observations and to contribute to a more comprehensive evaluation of the climate models. At present, the number of obs4MIPs datasets has grown to about 80, many undergoing updates, with another 20 or so in preparation, and more than 100 proposed and under consideration. Current global satellite-based datasets include, but are not limited to, humidity and temperature profiles; a wide range of cloud and aerosol observations; ocean surface wind, temperature, height, and sea ice fraction; surface and top of atmosphere longwave and shortwave radiation; along with ozone (O3), methane (CH4) and carbon dioxide (CO2) products. Proposed products expected for inclusion for CMIP6 analysis include, but are not limited to, alternative products for the above quantities, along with additional products for ocean surface flux and chlorophyll products, a number of vegetation products (e.g. FAPAR, LAI, burnt area fraction), ice sheet mass and height, carbon monoxide (CO) and nitrogen dioxide (NO2). While most obs4MIPs datasets are delivered as monthly and global, greater emphasis is being places on products with higher time resolution (e.g. daily) and/or regional products. Along with an increasing number of datasets, obs4MIPs has implemented a number of capability upgrades including: 1) an updated obs4MIPs data specifications document that provides for additional search facets and generally improves congruence with CMIP6 specifications for model datasets, 2) a set of six easily understood indicators that help guide users as to a dataset’s maturity and suitability for application, and 3) an option to supply supplemental information about a dataset beyond what can be found in the standard metadata. With the maturation of the obs4MIPs framework, the dataset inclusion process, and the dataset formatting guidelines and resources, the scope of the observations being considered is expected to grow to include gridded in-situ datasets as well as datasets with a regional focus, and the ultimate intent is to judiciously expand this scope to any observation dataset that has applicability for evaluation of the types of Earth System models used in CMIP.

2020 ◽  
Vol 13 (7) ◽  
pp. 2945-2958 ◽  
Author(s):  
Duane Waliser ◽  
Peter J. Gleckler ◽  
Robert Ferraro ◽  
Karl E. Taylor ◽  
Sasha Ames ◽  
...  

Abstract. The Observations for Model Intercomparison Project (Obs4MIPs) was initiated in 2010 to facilitate the use of observations in climate model evaluation and research, with a particular target being the Coupled Model Intercomparison Project (CMIP), a major initiative of the World Climate Research Programme (WCRP). To this end, Obs4MIPs (1) targets observed variables that can be compared to CMIP model variables; (2) utilizes dataset formatting specifications and metadata requirements closely aligned with CMIP model output; (3) provides brief technical documentation for each dataset, designed for nonexperts and tailored towards relevance for model evaluation, including information on uncertainty, dataset merits, and limitations; and (4) disseminates the data through the Earth System Grid Federation (ESGF) platforms, making the observations searchable and accessible via the same portals as the model output. Taken together, these characteristics of the organization and structure of obs4MIPs should entice a more diverse community of researchers to engage in the comparison of model output with observations and to contribute to a more comprehensive evaluation of the climate models. At present, the number of obs4MIPs datasets has grown to about 80; many are undergoing updates, with another 20 or so in preparation, and more than 100 are proposed and under consideration. A partial list of current global satellite-based datasets includes humidity and temperature profiles; a wide range of cloud and aerosol observations; ocean surface wind, temperature, height, and sea ice fraction; surface and top-of-atmosphere longwave and shortwave radiation; and ozone (O3), methane (CH4), and carbon dioxide (CO2) products. A partial list of proposed products expected to be useful in analyzing CMIP6 results includes the following: alternative products for the above quantities, additional products for ocean surface flux and chlorophyll products, a number of vegetation products (e.g., FAPAR, LAI, burned area fraction), ice sheet mass and height, carbon monoxide (CO), and nitrogen dioxide (NO2). While most existing obs4MIPs datasets consist of monthly-mean gridded data over the global domain, products with higher time resolution (e.g., daily) and/or regional products are now receiving more attention. Along with an increasing number of datasets, obs4MIPs has implemented a number of capability upgrades including (1) an updated obs4MIPs data specifications document that provides additional search facets and generally improves congruence with CMIP6 specifications for model datasets, (2) a set of six easily understood indicators that help guide users as to a dataset's maturity and suitability for application, and (3) an option to supply supplemental information about a dataset beyond what can be found in the standard metadata. With the maturation of the obs4MIPs framework, the dataset inclusion process, and the dataset formatting guidelines and resources, the scope of the observations being considered is expected to grow to include gridded in situ datasets as well as datasets with a regional focus, and the ultimate intent is to judiciously expand this scope to any observation dataset that has applicability for evaluation of the types of Earth system models used in CMIP.


2016 ◽  
Vol 9 (9) ◽  
pp. 3461-3482 ◽  
Author(s):  
Brian C. O'Neill ◽  
Claudia Tebaldi ◽  
Detlef P. van Vuuren ◽  
Veronika Eyring ◽  
Pierre Friedlingstein ◽  
...  

Abstract. Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.


2016 ◽  
Vol 7 (4) ◽  
pp. 813-830 ◽  
Author(s):  
Veronika Eyring ◽  
Peter J. Gleckler ◽  
Christoph Heinze ◽  
Ronald J. Stouffer ◽  
Karl E. Taylor ◽  
...  

Abstract. The Coupled Model Intercomparison Project (CMIP) has successfully provided the climate community with a rich collection of simulation output from Earth system models (ESMs) that can be used to understand past climate changes and make projections and uncertainty estimates of the future. Confidence in ESMs can be gained because the models are based on physical principles and reproduce many important aspects of observed climate. More research is required to identify the processes that are most responsible for systematic biases and the magnitude and uncertainty of future projections so that more relevant performance tests can be developed. At the same time, there are many aspects of ESM evaluation that are well established and considered an essential part of systematic evaluation but have been implemented ad hoc with little community coordination. Given the diversity and complexity of ESM analysis, we argue that the CMIP community has reached a critical juncture at which many baseline aspects of model evaluation need to be performed much more efficiently and consistently. Here, we provide a perspective and viewpoint on how a more systematic, open, and rapid performance assessment of the large and diverse number of models that will participate in current and future phases of CMIP can be achieved, and announce our intention to implement such a system for CMIP6. Accomplishing this could also free up valuable resources as many scientists are frequently "re-inventing the wheel" by re-writing analysis routines for well-established analysis methods. A more systematic approach for the community would be to develop and apply evaluation tools that are based on the latest scientific knowledge and observational reference, are well suited for routine use, and provide a wide range of diagnostics and performance metrics that comprehensively characterize model behaviour as soon as the output is published to the Earth System Grid Federation (ESGF). The CMIP infrastructure enforces data standards and conventions for model output and documentation accessible via the ESGF, additionally publishing observations (obs4MIPs) and reanalyses (ana4MIPs) for model intercomparison projects using the same data structure and organization as the ESM output. This largely facilitates routine evaluation of the ESMs, but to be able to process the data automatically alongside the ESGF, the infrastructure needs to be extended with processing capabilities at the ESGF data nodes where the evaluation tools can be executed on a routine basis. Efforts are already underway to develop community-based evaluation tools, and we encourage experts to provide additional diagnostic codes that would enhance this capability for CMIP. At the same time, we encourage the community to contribute observations and reanalyses for model evaluation to the obs4MIPs and ana4MIPs archives. The intention is to produce through the ESGF a widely accepted quasi-operational evaluation framework for CMIP6 that would routinely execute a series of standardized evaluation tasks. Over time, as this capability matures, we expect to produce an increasingly systematic characterization of models which, compared with early phases of CMIP, will more quickly and openly identify the strengths and weaknesses of the simulations. This will also reveal whether long-standing model errors remain evident in newer models and will assist modelling groups in improving their models. This framework will be designed to readily incorporate updates, including new observations and additional diagnostics and metrics as they become available from the research community.


2016 ◽  
Author(s):  
Veronika Eyring ◽  
Peter J. Gleckler ◽  
Christoph Heinze ◽  
Ronald J. Stouffer ◽  
Karl E. Taylor ◽  
...  

Abstract. The Coupled Model Intercomparison Project (CMIP) has successfully provided the climate community with a rich collection of simulation output from Earth system models (ESMs) that can be used to understand past climate changes and make projections and uncertainty estimates of the future. Confidence in ESMs can be gained because the models are based on physical principles and reproduce many important aspects of observed climate. Scientifically more research is required to identify the processes that are most responsible for systematic biases and the magnitude and uncertainty of future projections so that more relevant performance tests can be developed. At the same time, there are many aspects of ESM evaluation that are well-established and considered an essential part of systematic evaluation but are currently implemented ad hoc with little community coordination. Given the diversity and complexity of ESM model analysis, we argue that the CMIP community has reached a critical juncture at which many baseline aspects of model evaluation need to be performed much more efficiently to enable a systematic, open and rapid performance assessment of the large and diverse number of models that will participate in current and future phases of CMIP. Accomplishing this could also free up valuable resources as many scientists are frequently "re-inventing the wheel" by re-writing analysis routines for well-established analysis methods. A more systematic approach for the community would be to develop evaluation tools that are well suited for routine use and provide a wide range of diagnostics and performance metrics that comprehensively characterize model behaviour as soon as the output is published to the Earth System Grid Federation (ESGF). The CMIP infrastructure enforces data standards and conventions for model output accessible via ESGF, additionally publishing observations (obs4MIPs) and reanalyses (ana4MIPs) for Model Intercomparison Projects using the same data structure and organization. This largely facilitates routine evaluation of the models, but to be able to process the data automatically alongside the ESGF, the infrastructure needs to be extended with processing capabilities at the ESGF data nodes where the evaluation tools can be executed on a routine basis. Efforts are already underway to develop community-based evaluation tools, and we encourage experts to provide additional diagnostic codes that would enhance this capability for CMIP. At the same time, we encourage the community to contribute observations for model evaluation to the obs4MIPs archive. The intention is to produce through ESGF a widely accepted quasi-operational evaluation framework for climate models that would routinely execute a series of standardized evaluation tasks. Over time, as the capability matures, we expect to produce an increasingly systematic characterization of models, which, compared with early phases of CMIP, will more quickly and openly identify the strengths and weaknesses of the simulations. This will also expose whether long-standing model errors remain evident in newer models and will assist modelling groups in improving their models. This framework will be designed to readily incorporate updates, including new observations and additional diagnostics and metrics as they become available from the research community.


2013 ◽  
Vol 6 (1) ◽  
pp. 179-206 ◽  
Author(s):  
J.-F. Lamarque ◽  
D. T. Shindell ◽  
B. Josse ◽  
P. J. Young ◽  
I. Cionni ◽  
...  

Abstract. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry.


2021 ◽  
Author(s):  
Daniele Visioni ◽  
Douglas G. MacMartin ◽  
Ben Kravitz ◽  
Olivier Boucher ◽  
Andy Jones ◽  
...  

Abstract. We present here results from the Geoengineering Model Intercomparison Project (GeoMIP) simulations for the experiment G6sulfur and G6solar for six Earth System Models participating in the Climate Model Intercomparison Project (CMIP) Phase 6. The aim of the experiments is to reduce the warming from that resulting from a high-tier emission scenario (Shared Socioeconomic Pathways SSP5-8.5) to that resulting from a medium-tier emission scenario (SSP2-4.5). These simulations aim to analyze the response of climate models to a reduction in incoming surface radiation as a means to reduce global surface temperatures, and they do so either by simulating a stratospheric sulfate aerosol layer or, in a more idealized way, through a uniform reduction in the solar constant in the model. We find that, by the end of the century, there is a considerable inter-model spread in the needed injection of sulfate (29 ± 9 Tg-SO2/yr between 2081 and 2100), in how the aerosol cloud is distributed latitudinally, and in how stratospheric temperatures are influenced by the produced aerosol layer. Even in the simpler G6solar experiment, there is a spread in the needed solar dimming to achieve the same global temperature target (1.91 ± 0.44 %). The analyzed models already show significant differences in the response to the increasing CO2 concentrations for global mean temperatures and global mean precipitation (2.05 K ± 0.42 K and 2.28 ± 0.80 %, respectively, for the SSP5-8.5-SSP2-4.5 difference between 2081 and 2100): the differences in the simulated aerosol spread then change some of the underlying uncertainty, for example in terms of the global mean precipitation response (−3.79 ± 0.76 % for G6sulfur compared to −2.07 ± 0.40 % for G6solar against SSP2-4.5 between 2081 and 2100). These differences in the aerosols behavior also result in a larger inter-model spread in the regional response in the surface temperatures in the case of the G6sulfur simulations, suggesting the need to devise various, more specific experiments to single out and resolve particular sources of uncertainty. The spread in the modelled response suggests that a degree of caution is necessary when using these results for assessing specific impacts of geoengineering in various aspects of the Earth system: however, all models agree that, compared to a scenario with unmitigated warming, stratospheric aerosol geoengineering has the potential to both globally and locally reduce the increase in surface temperatures.


2016 ◽  
Vol 9 (9) ◽  
pp. 3427-3446 ◽  
Author(s):  
Dirk Notz ◽  
Alexandra Jahn ◽  
Marika Holland ◽  
Elizabeth Hunke ◽  
François Massonnet ◽  
...  

Abstract. A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic Coupled Model Intercomparison Project 6 (CMIP6)-endorsed Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice-related variables from climate-model simulations that allow for a better understanding and, ultimately, improvement of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice-related questions based on these simulations. Furthermore, the SIMIP protocol provides a standard for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows for an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget, and the mass budget. In this contribution, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.


2012 ◽  
Vol 5 (3) ◽  
pp. 2445-2502 ◽  
Author(s):  
J.-F. Lamarque ◽  
D. T. Shindell ◽  
B. Josse ◽  
P. J. Young ◽  
I. Cionni ◽  
...  

Abstract. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of timeslice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting radiative forcing and the associated composition changes. Here we introduce the various simulations performed under ACCMIP and the associated model output. The ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions lead to a significant range in emissions, mostly for ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results, but with outliers different enough to possibly affect their representation of climate impact on chemistry.


2021 ◽  
Vol 21 (2) ◽  
pp. 1211-1243
Author(s):  
Fiona M. O'Connor ◽  
N. Luke Abraham ◽  
Mohit Dalvi ◽  
Gerd A. Folberth ◽  
Paul T. Griffiths ◽  
...  

Abstract. Quantifying forcings from anthropogenic perturbations to the Earth system (ES) is important for understanding changes in climate since the pre-industrial (PI) period. Here, we quantify and analyse a wide range of present-day (PD) anthropogenic effective radiative forcings (ERFs) with the UK's Earth System Model (ESM), UKESM1, following the protocols defined by the Radiative Forcing Model Intercomparison Project (RFMIP) and the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). In particular, quantifying ERFs that include rapid adjustments within a full ESM enables the role of various chemistry–aerosol–cloud interactions to be investigated. Global mean ERFs for the PD (year 2014) relative to the PI (year 1850) period for carbon dioxide (CO2), nitrous oxide (N2O), ozone-depleting substances (ODSs), and methane (CH4) are 1.89 ± 0.04, 0.25 ± 0.04, −0.18 ± 0.04, and 0.97 ±  0.04 W m−2, respectively. The total greenhouse gas (GHG) ERF is 2.92 ± 0.04 W m−2. UKESM1 has an aerosol ERF of −1.09 ± 0.04 W m−2. A relatively strong negative forcing from aerosol–cloud interactions (ACI) and a small negative instantaneous forcing from aerosol–radiation interactions (ARI) from sulfate and organic carbon (OC) are partially offset by a substantial forcing from black carbon (BC) absorption. Internal mixing and chemical interactions imply that neither the forcing from ARI nor ACI is linear, making the aerosol ERF less than the sum of the individual speciated aerosol ERFs. Ozone (O3) precursor gases consisting of volatile organic compounds (VOCs), carbon monoxide (CO), and nitrogen oxides (NOx), but excluding CH4, exert a positive radiative forcing due to increases in O3. However, they also lead to oxidant changes, which in turn cause an indirect aerosol ERF. The net effect is that the ERF from PD–PI changes in NOx emissions is negligible at 0.03 ± 0.04 W m−2, while the ERF from changes in VOC and CO emissions is 0.33 ± 0.04 W m−2. Together, aerosol and O3 precursors (called near-term climate forcers (NTCFs) in the context of AerChemMIP) exert an ERF of −1.03 ± 0.04 W m−2, mainly due to changes in the cloud radiative effect (CRE). There is also a negative ERF from land use change (−0.17 ± 0.04 W m−2). When adjusted from year 1850 to 1700, it is more negative than the range of previous estimates, and is most likely due to too strong an albedo response. In combination, the net anthropogenic ERF (1.76 ± 0.04 W m−2) is consistent with other estimates. By including interactions between GHGs, stratospheric and tropospheric O3, aerosols, and clouds, this work demonstrates the importance of ES interactions when quantifying ERFs. It also suggests that rapid adjustments need to include chemical as well as physical adjustments to fully account for complex ES interactions.


2016 ◽  
Author(s):  
Dirk Notz ◽  
Alexandra Jahn ◽  
Marika Holland ◽  
Elizabeth Hunke ◽  
François Massonnet ◽  
...  

Abstract. A better understanding of the role of sea ice for the changing climate of our planet is the central aim of the diagnostic CMIP6 Sea-Ice Model Intercomparison Project (SIMIP). To reach this aim, SIMIP requests sea-ice related variables from climate-model simulations that allow for a better understanding, and ultimately improvement, of biases and errors in sea-ice simulations with large-scale climate models. This then allows us to better understand to what degree CMIP6 model simulations relate to reality, thus improving our confidence in answering sea-ice related questions based on these simulations. Furthermore, the SIMIP protocol provides a standard for sea-ice model output that will streamline and hence simplify the analysis of the simulated sea-ice evolution in research projects independent of CMIP. To reach its aims, SIMIP provides a structured list of model output that allows an examination of the three main budgets that govern the evolution of sea ice, namely the heat budget, the momentum budget and the mass budget. In this contribution, we explain the aims of SIMIP in more detail and outline how its design allows us to answer some of the most pressing questions that sea ice still poses to the international climate-research community.


Sign in / Sign up

Export Citation Format

Share Document