scholarly journals On the increased climate sensitivity in the EC-Earth model from CMIP5 to CMIP6

Author(s):  
Klaus Wyser ◽  
Twan van Noije ◽  
Shuting Yang ◽  
Jost von Hardenberg ◽  
Declan O'Donnell ◽  
...  

Abstract. Many modelling groups that contribute to CMIP6 (Coupled Model Intercomparison Project phase 6) have found a larger equilibrium climate sensitivity (ECS) with their latest model versions compared to the values obtained with earlier versions for CMIP5. This is also the case for the EC-Earth model, and in this study we investigate what developments since the CMIP5 era could have caused the increase in the ECS in this model. Apart from increases in horizontal and vertical resolution, the EC-Earth model also has substantially changed the representation of aerosols, and in particular it has introduced a more sophisticated description of aerosol indirect effects. After testing the model with some of the recent updates switched off, we find that the ECS increase can be attributed to the more advanced treatment of aerosols, with the largest contribution coming from the effect of aerosols on cloud microphysics (cloud lifetime or second indirect effect). The increase in climate sensitivity is unrelated to model tuning as all experiments have been performed with the same tuning parameters and only the representation of the aerosol effects has been changing. These results cannot be easily generalised to other models as their CMIP5 and CMIP6 versions may differ in other aspects than the aerosol-cloud interaction, but the results highlights the strong sensitivity of ECS to the details of the aerosol forcing.

2020 ◽  
Vol 13 (8) ◽  
pp. 3465-3474 ◽  
Author(s):  
Klaus Wyser ◽  
Twan van Noije ◽  
Shuting Yang ◽  
Jost von Hardenberg ◽  
Declan O'Donnell ◽  
...  

Abstract. Many modelling groups that contribute to CMIP6 (Coupled Model Intercomparison Project Phase 6) have found a larger equilibrium climate sensitivity (ECS) with their latest model versions compared with the values obtained with the earlier versions used in CMIP5. This is also the case for the EC-Earth model. Therefore, in this study, we investigate what developments since the CMIP5 era could have caused the increase in the ECS in this model. Apart from increases in the horizontal and vertical resolution, the EC-Earth model has also substantially changed the representation of aerosols; in particular, it has introduced a more sophisticated description of aerosol indirect effects. After testing the model with some of the recent updates switched off, we find that the ECS increase can be attributed to the more advanced treatment of aerosols, with the largest contribution coming from the effect of aerosols on cloud microphysics (cloud lifetime or second indirect effect). The increase in climate sensitivity is unrelated to model tuning, as all experiments were performed with the same tuning parameters and only the representation of the aerosol effects was changed. These results cannot be generalised to other models, as their CMIP5 and CMIP6 versions may differ with respect to aspects other than the aerosol–cloud interaction, but the results highlight the strong sensitivity of ECS to the details of the aerosol forcing.


2020 ◽  
Vol 20 (16) ◽  
pp. 9591-9618 ◽  
Author(s):  
Christopher J. Smith ◽  
Ryan J. Kramer ◽  
Gunnar Myhre ◽  
Kari Alterskjær ◽  
William Collins ◽  
...  

Abstract. The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m−2, comprised of 1.81 (±0.09) W m−2 from CO2, 1.08 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.01 (± 0.23) W m−2 from aerosols and −0.09 (±0.13) W m−2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.21 W m−2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.


2013 ◽  
Vol 13 (8) ◽  
pp. 4133-4144 ◽  
Author(s):  
M. F. Khairoutdinov ◽  
C.-E. Yang

Abstract. The study attempts to evaluate the aerosol indirect effects over tropical oceans in regions of deep convection applying a three-dimensional cloud-resolving model run over a doubly-periodic domain. The Tropics are modelled using a radiative-convective equilibrium idealisation when the radiation, turbulence, cloud microphysics and surface fluxes are explicitly represented while the effects of large-scale circulation are ignored. The aerosol effects are modelled by varying the number concentration of cloud condensation nuclei (CCN) at 1% supersaturation, which serves as a proxy for the aerosol amount in the environment, over a wide range, from pristine maritime (50 cm−3) to polluted (1000 cm−3) conditions. No direct effects of aerosol on radiation are included. Two sets of simulations have been run: fixed (non-interactive) sea surface temperature (SST) and interactive SST as predicted by a simple slab-ocean model responding to the surface radiative fluxes and surface enthalpy flux. Both sets of experiments agree on the tendency of increased aerosol concentrations to make the shortwave cloud forcing more negative and reduce the longwave cloud forcing in response to increasing CCN concentration. These, in turn, tend to cool the SST in interactive-SST case. It is interesting that the absolute change of the SST and most other bulk quantities depends only on relative change of CCN concentration; that is, same SST change can be the result of doubling CCN concentration regardless of clean or polluted conditions. It is found that the 10-fold increase of CCN concentration can cool the SST by as much as 1.5 K. This is quite comparable to 2.1–2.3 K SST warming obtained in a simulation for clean maritime conditions, but doubled CO2 concentration. Assuming the aerosol concentration has increased from preindustrial time by 30%, the radiative forcing due to indirect aerosol effects is estimated to be −0.3 W m−2. It is found that the indirect aerosol effect is dominated by the first (Twomey) effect. Qualitative differences between the interactive and fixed SST cases have been found in sensitivity of the hydrological cycle to the increase in CCN concentration; namely, the precipitation rate shows some tendency to increase in fixed SST case, but robust tendency to decrease in interactive SST case.


2020 ◽  
Author(s):  
Clare Marie Flynn ◽  
Thorsten Mauritsen

Abstract. The Earth's equilibrium climate sensitivity (ECS) to a doubling of atmospheric CO2, along with the transient 35 climate response (TCR) and greenhouse gas emissions pathways, determines the amount of future warming. Coupled climate models have in the past been important tools to estimate and understand ECS. ECS estimated from Coupled Model Intercomparison Project Phase 5 (CMIP5) models lies between 2.0 and 4.7 K (mean of 3.2 K), whereas in the latest CMIP6 the spread has increased: 1.8–5.5 K (mean of 3.7 K), with 5 out of 25 models exceeding 5 K. It is thus pertinent to understand the causes underlying this shift. Here we compare the CMIP5 and CMIP6 model ensembles, and find a systematic shift between CMIP eras to be unexplained as a process of random sampling from modeled forcing and feedback distributions. Instead, shortwave feedbacks shift towards more positive values, in particular over the Southern Ocean, driving the shift towards larger ECS values in many of the models. These results suggest that changes in model treatment of mixed-phase cloud processes and changes to Antarctic sea ice representation are likely causes of the shift towards larger ECS. Somewhat surprisingly, CMIP6 models exhibit less historical warming than CMIP5 models; the evolution of the warming suggests, however, that several of the models apply too strong aerosol cooling resulting in too weak mid 20th Century warming compared to the instrumental record.


2021 ◽  
Author(s):  
Martin Rypdal ◽  
Niklas Boers ◽  
Hege-Beate Fredriksen ◽  
Kai-Uwe Eiselt ◽  
Andreas Johansen ◽  
...  

Abstract A remaining carbon budget (RCB) estimates how much CO2 we can emit and still reach a specific temperature target. The RCB concept is attractive since it easily communicates to the public and policymakers, but RCBs are also subject to uncertainties. The expected warming levels for a given carbon budget has a wide uncertainty range, which we show here to increase with less ambitious targets, i.e., with higher CO2 emissions and temperatures. Leading causes of RCB uncertainty are the future non-CO2 emissions, Earth system feedbacks, and the spread in the climate sensitivity among climate models. The latter is investigated in this paper, using simple emulators of Earth System Models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble. It is shown that the transient climate response to cumulative emissions of carbon (TCRE) is approximately proportional to the effective equilibrium climate sensitivity (ECS). For temperature targets between 1.5-3.0 degrees C, the models exhibiting low ECS increase RCB by a factor two compared to those with high sensitivity, suggesting that observational constraints imposed on the ECS in the model ensemble also will reduce uncertainty in the RCB estimates.


2020 ◽  
Author(s):  
Philip Lorenz ◽  
Frank Kreienkamp ◽  
Tobias Geiger

<p>Die Ergebnisse der Klimamodellierung, die im Rahmen des jüngsten Coupled Model Intercomparison Project (CMIP6) durchgeführt wurden, zeigen signifikante Veränderungen der modellspezifischen Gleichgewichtsklimaempfindlichkeit (Equilibrium Climate Sensitivity, ECS) im Vergleich zum Vorgängerprojekt CMIP5. Die neueren Versionen vieler globaler Klimamodelle (GCMs) weisen höhere ECS-Werte auf, die zu einer stärkeren globalen Erwärmung führen als zuvor berechnet. Gleichzeitig ist die Multi-GCM-Streuung von ECS unter CMIP6 deutlich größer als unter CMIP5.</p> <p>Ein Teil der im Rahmen von CMIP6 durchgeführten Klimaprojektionen wurden mittels der am DWD entwickelten statistisch-empirischen Downscaling-Methode EPISODES für das Gebiet von Deutschland regionalisiert. Diese Ergebnisse wurden mit vergleichbaren Datensätzen der CMIP5-Läufe verglichen. Die Ergebnisse dieser Analysen werden vorgestellt.</p>


2016 ◽  
Vol 2 (11) ◽  
pp. e1501923 ◽  
Author(s):  
Tobias Friedrich ◽  
Axel Timmermann ◽  
Michelle Tigchelaar ◽  
Oliver Elison Timm ◽  
Andrey Ganopolski

Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing—referred to as specific equilibrium climate sensitivity (S)—is still subject to uncertainties. We estimate global mean temperature variations andSusing a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal thatSis strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth’s future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections.


2008 ◽  
Vol 21 (19) ◽  
pp. 5076-5090 ◽  
Author(s):  
K. D. Williams ◽  
W. J. Ingram ◽  
J. M. Gregory

Abstract Effective climate sensitivity is often assumed to be constant (if uncertain), but some previous studies of general circulation model (GCM) simulations have found it varying as the simulation progresses. This complicates the fitting of simple models to such simulations, as well as having implications for the estimation of climate sensitivity from observations. This study examines the evolution of the feedbacks determining the climate sensitivity in GCMs submitted to the Coupled Model Intercomparison Project. Apparent centennial-time-scale variations of effective climate sensitivity during stabilization to a forcing can be considered an artifact of using conventional forcings, which only allow for instantaneous effects and stratospheric adjustment. If the forcing is adjusted for processes occurring on time scales that are short compared to the climate stabilization time scale, then there is little centennial-time-scale evolution of effective climate sensitivity in any of the GCMs. Here it is suggested that much of the apparent variation in effective climate sensitivity identified in previous studies is actually due to the comparatively fast forcing adjustment. Persistent differences are found in the strength of the feedbacks between the coupled atmosphere–ocean (AO) versions and their atmosphere–mixed layer ocean (AML) counterparts (the latter are often assumed to give the equilibrium climate sensitivity of the AOGCM). The AML model can typically only estimate the equilibrium climate sensitivity of the parallel AO version to within about 0.5 K. The adjustment to the forcing to account for comparatively fast processes varies in magnitude and sign between GCMs, as well as differing between AO and AML versions of the same model. There is evidence from one AOGCM that the forcing adjustment may take a couple of decades, with implications for observationally based estimates of equilibrium climate sensitivity. It is suggested that at least some of the spread in twenty-first-century global temperature predictions between GCMs is due to differing adjustment processes, hence work to understand these differences should be a priority.


2020 ◽  
Vol 20 (13) ◽  
pp. 7829-7842 ◽  
Author(s):  
Clare Marie Flynn ◽  
Thorsten Mauritsen

Abstract. The Earth's equilibrium climate sensitivity (ECS) to a doubling of atmospheric CO2, along with the transient climate response (TCR) and greenhouse gas emissions pathways, determines the amount of future warming. Coupled climate models have in the past been important tools to estimate and understand ECS. ECS estimated from Coupled Model Intercomparison Project Phase 5 (CMIP5) models lies between 2.0 and 4.7 K (mean of 3.2 K), whereas in the latest CMIP6 the spread has increased to 1.8–5.5 K (mean of 3.7 K), with 5 out of 25 models exceeding 5 K. It is thus pertinent to understand the causes underlying this shift. Here we compare the CMIP5 and CMIP6 model ensembles and find a systematic shift between CMIP eras to be unexplained as a process of random sampling from modeled forcing and feedback distributions. Instead, shortwave feedbacks shift towards more positive values, in particular over the Southern Ocean, driving the shift towards larger ECS values in many of the models. These results suggest that changes in model treatment of mixed-phase cloud processes and changes to Antarctic sea ice representation are likely causes of the shift towards larger ECS. Somewhat surprisingly, CMIP6 models exhibit less historical warming than CMIP5 models, despite an increase in TCR between CMIP eras (mean TCR increased from 1.7 to 1.9 K). The evolution of the warming suggests, however, that several of the CMIP6 models apply too strong aerosol cooling, resulting in too weak mid-20th century warming compared to the instrumental record.


2020 ◽  
Vol 6 (26) ◽  
pp. eaba1981 ◽  
Author(s):  
Gerald A. Meehl ◽  
Catherine A. Senior ◽  
Veronika Eyring ◽  
Gregory Flato ◽  
Jean-Francois Lamarque ◽  
...  

For the current generation of earth system models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6), the range of equilibrium climate sensitivity (ECS, a hypothetical value of global warming at equilibrium for a doubling of CO2) is 1.8°C to 5.6°C, the largest of any generation of models dating to the 1990s. Meanwhile, the range of transient climate response (TCR, the surface temperature warming around the time of CO2 doubling in a 1% per year CO2 increase simulation) for the CMIP6 models of 1.7°C (1.3°C to 3.0°C) is only slightly larger than for the CMIP3 and CMIP5 models. Here we review and synthesize the latest developments in ECS and TCR values in CMIP, compile possible reasons for the current values as supplied by the modeling groups, and highlight future directions. Cloud feedbacks and cloud-aerosol interactions are the most likely contributors to the high values and increased range of ECS in CMIP6.


Sign in / Sign up

Export Citation Format

Share Document