scholarly journals Understanding the development of systematic errors in the Asian Summer Monsoon

2020 ◽  
Author(s):  
Gill M. Martin ◽  
Richard C. Levine ◽  
José M. Rodriguez ◽  
Michael Vellinga

Abstract. Despite the importance of monsoon rainfall to over half of the world’s population, many of the current generation of climate models struggle to capture some of the major features of the various monsoon systems. Studies of the development of errors in several tropical regions have shown that they start to develop very quickly, within the first few days of a model simulation, and can then persist to climate timescales. Understanding the sources of such errors requires the combination of various modelling techniques and sensitivity experiments of varying complexity. Here, we demonstrate how such analysis can shed light on the way in which monsoon errors develop, their local and remote drivers and feedbacks. We make use of the seamless modelling approach adopted by the Met Office, whereby different applications of the Met Office Unified Model (MetUM) use essentially the same model configuration (dynamical core and physical parametrisations) across a range of spatial and temporal scales. Using the Asian Summer Monsoon as an example, we show that error patterns in circulation and rainfall over the East Asia Summer Monsoon (EASM) region in the MetUM are similar between multi-decadal climate simulations and seasonal hindcasts initialised in spring. Analysis of the development of these errors on both short-range and seasonal timescales following model initialisation suggests that both the Maritime Continent and the oceans around the Philippines play a role in the development of EASM errors, with the Indian summer monsoon region providing an additional contribution. Regional modelling with various lateral boundary locations helps to separate local and remote contributions to the errors, while regional relaxation experiments shed light on the influence of errors developing within particular areas on the region as a whole.

2021 ◽  
Vol 14 (2) ◽  
pp. 1007-1035
Author(s):  
Gill M. Martin ◽  
Richard C. Levine ◽  
José M. Rodriguez ◽  
Michael Vellinga

Abstract. Despite the importance of monsoon rainfall to over half of the world's population, many climate models of the current generation struggle to capture some of the major features of the various monsoon systems. Studies of the development of errors in several tropical regions have shown that they start to develop very quickly, within the first few days of a model simulation, and can then persist to climate timescales. Understanding the sources of such errors requires the combination of various modelling techniques and sensitivity experiments of varying complexity. Here, we demonstrate how such analysis can shed light on the way in which monsoon errors develop, their local and remote drivers and feedbacks. We make use of the seamless modelling approach adopted by the Met Office, whereby different applications of the Met Office Unified Model (MetUM) use essentially the same model configuration (dynamical core and physical parameterisations) across a range of spatial and temporal scales. Using the Asian summer monsoon (ASM) as an example, we show that error patterns in circulation and rainfall over the ASM region in the MetUM are similar between multidecadal climate simulations and seasonal hindcasts initialised in spring. Analysis of the development of these errors on both short-range and seasonal timescales following model initialisation suggests that both the Maritime Continent and the oceans around the Philippines play a role in the development of East Asian summer monsoon errors, with the Indian summer monsoon region providing an additional contribution, while the errors over the Indian summer monsoon region itself appear to arise locally. Regional modelling with various lateral boundary locations helps to separate local and remote contributions to the errors, while regional relaxation experiments shed light on the influence of errors developing within particular areas on the region as a whole.


2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Yu‐Shiang Tung ◽  
S.‐Y. Simon Wang ◽  
Jung‐Lien Chu ◽  
Chi‐Hua Wu ◽  
Yung‐Ming Chen ◽  
...  

2017 ◽  
Vol 114 (27) ◽  
pp. 6972-6977 ◽  
Author(s):  
Pengfei Yu ◽  
Karen H. Rosenlof ◽  
Shang Liu ◽  
Hagen Telg ◽  
Troy D. Thornberry ◽  
...  

An enhanced aerosol layer near the tropopause over Asia during the June–September period of the Asian summer monsoon (ASM) was recently identified using satellite observations. Its sources and climate impact are presently not well-characterized. To improve understanding of this phenomenon, we made in situ aerosol measurements during summer 2015 from Kunming, China, then followed with a modeling study to assess the global significance. The in situ measurements revealed a robust enhancement in aerosol concentration that extended up to 2 km above the tropopause. A climate model simulation demonstrates that the abundant anthropogenic aerosol precursor emissions from Asia coupled with rapid vertical transport associated with monsoon convection leads to significant particle formation in the upper troposphere within the ASM anticyclone. These particles subsequently spread throughout the entire Northern Hemispheric (NH) lower stratosphere and contribute significantly (∼15%) to the NH stratospheric column aerosol surface area on an annual basis. This contribution is comparable to that from the sum of small volcanic eruptions in the period between 2000 and 2015. Although the ASM contribution is smaller than that from tropical upwelling (∼35%), we find that this region is about three times as efficient per unit area and time in populating the NH stratosphere with aerosol. With a substantial amount of organic and sulfur emissions in Asia, the ASM anticyclone serves as an efficient smokestack venting aerosols to the upper troposphere and lower stratosphere. As economic growth continues in Asia, the relative importance of Asian emissions to stratospheric aerosol is likely to increase.


2014 ◽  
Vol 27 (7) ◽  
pp. 2682-2698 ◽  
Author(s):  
Juan Feng ◽  
Lin Wang ◽  
Wen Chen

Abstract Modulation of the Pacific decadal oscillation (PDO) on the behavior of the East Asian summer monsoon (EASM) in El Niño decaying years has been studied. When El Niño is in phase with the PDO (El Niño/high PDO), the low-level atmospheric anomalies are characterized by an anticyclone around the Philippines and a cyclone around Japan, inducing an anomalous tripolar rainfall pattern in China. In this case, the western Pacific subtropical high (WPSH) experiences a one-time slightly northward shift in July and then stays stationary from July to August. The corresponding anomalous tripolar rainfall pattern has weak subseasonal variations. When El Niño is out of phase with the PDO (El Niño/low PDO), however, the anomalous Philippines anticyclone has a much larger spatial domain, thereby causing an anomalous dipole rainfall pattern. Accordingly, WPSH experiences clearly two northward shifts. Therefore, the related dipole rainfall pattern has large subseasonal variations. One pronounced feature is that the positive rainfall anomalies shift northward from southern China in June to central China in July and finally to northern China in August. The different El Niño–EASM relationships are caused by the influences of PDO on the decaying speed of El Niño. During the high PDO phase, El Niño decays slowly and has a strong anchor in the north Indian Ocean warming, which is responsible for the anomalous EASM. Comparatively, during the low PDO phase, El Niño decays rapidly and La Niña develops in summer, which induces different EASM anomalies from that during the high PDO phase. Additionally, PDO changes El Niño behaviors mainly via modifying the background tropical winds.


Sign in / Sign up

Export Citation Format

Share Document