scholarly journals MPR 1.0: A stand-alone Multiscale Parameter Regionalization Tool for Improved Parameter Estimation of Land Surface Models

2021 ◽  
Author(s):  
Robert Schweppe ◽  
Stephan Thober ◽  
Matthias Kelbling ◽  
Rohini Kumar ◽  
Sabine Attinger ◽  
...  

Abstract. Distributed environmental models such as land surface models (LSM) require model parameters in each spatial modelling unit (e.g. grid cell), thereby leading to a high-dimensional parameter space. One approach to decrease the dimen- sionality of parameter space in these models is to use regularization techniques. One such highly efficient technique is the Multiscale Parameter Regionalization (MPR) framework that translates high-resolution predictor variables (e.g., soil textural properties) into model parameters (e.g., porosity) via transfer functions (TFs) and upscaling operators that are suitable for every modeled process. This framework yields seamless model parameters at multiple scales and locations in an effective manner. However, integration of MPR into existing modeling workflows has been hindered thus far by hard-coded configurations and non-modular software designs. For these reasons, we redesigned MPR as a model-agnostic, stand-alone tool. It is a useful software for creating graphs of netCDF variables, wherein each node is a variable and the links consist of TFs and/or upscaling operators. In this study, we present and verify our tool against a previous version, which was implemented in the mesoscale hydrologic model mHM (www.ufz.de/mhm). By using this tool for the generation of continental-scale soil hydraulic param- eters applicable to different models (Noah-MP and HTESSEL), we showcase its general functionality and flexibility. Further, using model parameters estimated by the MPR tool leads to significant changes in long-term estimates of evapotranspiration, as compared to their default parameterizations. For example, a change of up to 25 % in long-term evapotranspiration flux is observed in Noah-MP and HTESSEL in the Mississippi River basin. We postulate that use of the stand-alone MPR tool will considerably increase the transparency and reproducibility of the parameter estimation process in distributed (environmental) models. It will also allow a rigorous uncertainty estimation related to the errors of the predictors (e.g., soil texture fields), transfer function and its parameters, and remapping (or upscaling) algorithms.

2020 ◽  
Author(s):  
Stephan Thober ◽  
Matthias Kelbling ◽  
Florian Pappenberger ◽  
Christel Prudhomme ◽  
Gianpaolo Balsamo ◽  
...  

<p>The representation of the water and energy cycle in environmental models is closely linked to the parameter values used in the process parametrizations. The dimension of the parameter space in spatially distributed environmental models corresponds to the number of grid cells multiplied by the number of parameters per grid cell. For large-scale simulations on national and continental scales, the dimensionality of the parameter space is too high for efficient parameter estimation using inverse estimation methods. A regularization of the parameter space is necessary to reduce its dimensionality. The Multiscale Parameter Regionalization (MPR) is one approach to achieve this.</p><p>MPR translates local geophysical properties into model parameters. It consists of two steps: 1) local high-resolution geophysical data sets (e.g. soil maps) are translated into model parameters using a transfer function. 2) the high-resolution model parameters are scaled to the model resolution using suitable upscaling operators (e.g., harmonic mean). The MPR technique was introduced into the mesoscale hydrologic model (mHM, Samaniego et al. 2010, Kumar et al. 2013) and it is key factor for its success on transferring parameters across scales and locations.  </p><p>In this study, we apply MPR to vegetation and soil parameters in the land surface model HTESSEL. This model is the land-surface component of the European Centre for Medium-Range Weather Forecasting seasonal forecasting system. About 100 hard-coded parameters have been extracted to allow for a comprehensive sensitivity analysis and parameter estimation.</p><p>We analyze simulated evaporation and runoff fluxes by HTESSEL using parameters estimated by MPR in comparison to a default HTESSEL setup over Europe. The magnitude of simulated long-term fluxes deviates the most (up to 10% and 20% for evapotranspiration and runoff, respectively) in regions with a large subgrid variability in geophysical attributes (e.g., soil texture). The choice of transfer functions and upscaling operators influences the magnitude of these differences and governs model performance assessed after calibration against observations (e.g. streamflow).</p><p><strong>References:</strong></p><p>Samaniego L., et al.  <strong>https://doi.org/10.1029/2008WR007327</strong></p><p>Kumar, R., et al.  <strong>https://doi.org/10.1029/2012WR012195</strong></p>


2017 ◽  
Vol 18 (3) ◽  
pp. 897-915 ◽  
Author(s):  
Jennifer L. Jefferson ◽  
Reed M. Maxwell ◽  
Paul G. Constantine

Abstract Land surface models, like the Common Land Model component of the ParFlow integrated hydrologic model (PF-CLM), are used to estimate transpiration from vegetated surfaces. Transpiration rates quantify how much water moves from the subsurface through the plant and into the atmosphere. This rate is controlled by the stomatal resistance term in land surface models. The Ball–Berry stomatal resistance parameterization relies, in part, on the rate of photosynthesis, and together these equations require the specification of 20 input parameters. Here, the active subspace method is applied to 2100 year-long PF-CLM simulations, forced by atmospheric data from California, Colorado, and Oklahoma, to identify which input parameters are important and how they relate to three quantities of interest: transpiration, stomatal resistance from the sunlit portion of the canopy, and stomatal resistance from the shaded portion. The slope (mp) and intercept (bp) parameters associated with the Ball–Berry parameterization are consistently important for all locations, along with five parameters associated with ribulose bisphosphate carboxylase/oxygenase (RuBisCO)- and light-limited rates of photosynthesis [CO2 Michaelis–Menten constant at 25°C (kc25), maximum ratio of oxygenation to carboxylation (ocr), quantum efficiency at 25°C (qe25), maximum rate of carboxylation at 25°C (vcmx25), and multiplier in the denominator of the equation used to compute the light-limited rate of photosynthesis (wj1)]. The importance of these input parameters, quantified by the active variable weight, and the relationship between the input parameters and quantities of interest vary seasonally and diurnally. Input parameter values influence transpiration rates most during midday, summertime hours when fluxes are large. This research informs model users about which photosynthesis and stomatal resistance parameters should be more carefully selected. Quantifying sensitivities associated with the stomatal resistance term is necessary to better understand transpiration estimates from land surface models.


2018 ◽  
Vol 15 (15) ◽  
pp. 4731-4757 ◽  
Author(s):  
Ronny Meier ◽  
Edouard L. Davin ◽  
Quentin Lejeune ◽  
Mathias Hauser ◽  
Yan Li ◽  
...  

Abstract. Modeling studies have shown the importance of biogeophysical effects of deforestation on local climate conditions but have also highlighted the lack of agreement across different models. Recently, remote-sensing observations have been used to assess the contrast in albedo, evapotranspiration (ET), and land surface temperature (LST) between forest and nearby open land on a global scale. These observations provide an unprecedented opportunity to evaluate the ability of land surface models to simulate the biogeophysical effects of forests. Here, we evaluate the representation of the difference of forest minus open land (i.e., grassland and cropland) in albedo, ET, and LST in the Community Land Model version 4.5 (CLM4.5) using various remote-sensing and in situ data sources. To extract the local sensitivity to land cover, we analyze plant functional type level output from global CLM4.5 simulations, using a model configuration that attributes a separate soil column to each plant functional type. Using the separated soil column configuration, CLM4.5 is able to realistically reproduce the biogeophysical contrast between forest and open land in terms of albedo, daily mean LST, and daily maximum LST, while the effect on daily minimum LST is not well captured by the model. Furthermore, we identify that the ET contrast between forests and open land is underestimated in CLM4.5 compared to observation-based products and even reversed in sign for some regions, even when considering uncertainties in these products. We then show that these biases can be partly alleviated by modifying several model parameters, such as the root distribution, the formulation of plant water uptake, the light limitation of photosynthesis, and the maximum rate of carboxylation. Furthermore, the ET contrast between forest and open land needs to be better constrained by observations to foster convergence amongst different land surface models on the biogeophysical effects of forests. Overall, this study demonstrates the potential of comparing subgrid model output to local observations to improve current land surface models' ability to simulate land cover change effects, which is a promising approach to reduce uncertainties in future assessments of land use impacts on climate.


2014 ◽  
Vol 18 (1) ◽  
pp. 193-212 ◽  
Author(s):  
P. Trambauer ◽  
E. Dutra ◽  
S. Maskey ◽  
M. Werner ◽  
F. Pappenberger ◽  
...  

Abstract. Evaporation is a key process in the water cycle with implications ranging, inter alia, from water management to weather forecast and climate change assessments. The estimation of continental evaporation fluxes is complex and typically relies on continental-scale hydrological models or land-surface models. However, it appears that most global or continental-scale hydrological models underestimate evaporative fluxes in some regions of Africa, and as a result overestimate stream flow. Other studies suggest that land-surface models may overestimate evaporative fluxes. In this study, we computed actual evaporation for the African continent using a continental version of the global hydrological model PCR-GLOBWB, which is based on a water balance approach. Results are compared with other independently computed evaporation products: the evaporation results from the ECMWF reanalysis ERA-Interim and ERA-Land (both based on the energy balance approach), the MOD16 evaporation product, and the GLEAM product. Three other alternative versions of the PCR-GLOBWB hydrological model were also considered. This resulted in eight products of actual evaporation, which were compared in distinct regions of the African continent spanning different climatic regimes. Annual totals, spatial patterns and seasonality were studied and compared through visual inspection and statistical methods. The comparison shows that the representation of irrigation areas has an insignificant contribution to the actual evaporation at a continental scale with a 0.5° spatial resolution when averaged over the defined regions. The choice of meteorological forcing data has a larger effect on the evaporation results, especially in the case of the precipitation input as different precipitation input resulted in significantly different evaporation in some of the studied regions. ERA-Interim evaporation is generally the highest of the selected products followed by ERA-Land evaporation. In some regions, the satellite-based products (GLEAM and MOD16) show a different seasonal behaviour compared to the other products. The results from this study contribute to a better understanding of the suitability and the differences between products in each climatic region. Through an improved understanding of the causes of differences between these products and their uncertainty, this study provides information to improve the quality of evaporation products for the African continent and, consequently, leads to improved water resources assessments at regional scale.


2016 ◽  
Vol 17 (3) ◽  
pp. 745-759 ◽  
Author(s):  
Grey S. Nearing ◽  
David M. Mocko ◽  
Christa D. Peters-Lidard ◽  
Sujay V. Kumar ◽  
Youlong Xia

Abstract Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. This method is extended with a “large sample” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in 1) forcing data, 2) model parameters, and 3) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in phase 2 of the North American Land Data Assimilation System (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of NLDAS-2. In particular, continued work toward refining the parameter maps and lookup tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.


2019 ◽  
Author(s):  
Fuad Yassin ◽  
Saman Razavi ◽  
Mohamed Elshamy ◽  
Bruce Davison ◽  
Gonzalo Sapriza-Azuri ◽  
...  

Abstract. Reservoirs significantly affect flow regimes in watershed systems by changing the magnitude and timing of streamflows. Failure to represent these effects limits the performance of hydrological and land surface models (H-LSMs) in the many highly regulated basins across the globe and limits the applicability of such models to investigate the futures of watershed systems through scenario analysis (e.g., scenarios of climate, land use, or reservoir regulation changes). An adequate representation of reservoirs and their operation in an H-LSM is therefore essential for a realistic representation of the downstream flow regime. In this paper, we present a general parametric reservoir operation model based on piecewise linear relationships between reservoir storage, inflow, and release, to approximate actual reservoir operations. For the identification of the model parameters, we propose two strategies: (a) a generalized parameterization that requires a relatively limited amount of data; and (b) direct calibration via multi-objective optimization when more data on historical storage and release are available. We use data from 37 reservoir case studies located in several regions across the globe for developing and testing the model. We further build this reservoir operation model into the MESH modelling system, which is a large-scale H-LSM. Our results across the case studies show that the proposed reservoir model with both of the parameter identification strategies leads to improved simulation accuracy compared with the other widely used approaches for reservoir operation simulation. We further show the significance of enabling MESH with this reservoir model and discuss the interdependent effects of the simulation accuracy of natural processes and that of reservoir operation on the overall model performance. The reservoir operation model is generic and can be integrated into any H-LSM.


2018 ◽  
Author(s):  
Ronny Meier ◽  
Edouard L. Davin ◽  
Quentin Lejeune ◽  
Mathias Hauser ◽  
Yan Li ◽  
...  

Abstract. Modelling studies have shown the importance of biogeophysical effects of deforestation on local climate conditions, but have also highlighted the lack of agreement across different models. Recently, remote sensing observations have been used to assess the contrast in albedo, evapotranspiration (ET), and land surface temperature (LST) between forest and nearby open land on a global scale. These observations provide an unprecedented opportunity to evaluate the ability of land surface models to simulate the biogeophysical effects of forests. Here, we evaluate the representation of the difference of forest minus open land (i.e., grassland and cropland) in albedo, ET, and LST in the Community Land Model version 4.5 (CLM4.5) using various remote sensing and in-situ data sources. To extract the local sensitivity to land cover we analyze plant functional type level output from global CLM4.5 simulations, using a model configuration that attributes a separate soil column to each plant functional type. Using the separated soil column configuration, CLM4.5 is able to realistically reproduce the biogeophysical contrast between forest and open land in terms of albedo, daily mean LST, and daily maximum LST, while the effect on daily minimum LST is not well captured by the model. Furthermore, we identify that the ET contrast between forests and open land is underestimated in CLM4.5 compared to observation-based products and even reversed in sign for some regions, even when considering uncertainties in these products. We then show that these biases can be partly alleviated by modifying several model parameters, such as the root distribution, the formulation of plant water uptake, the light limitation of photosynthesis, and the maximum rate of carboxylation. Furthermore, the ET contrast between forest and open land needs to be better constrained by observations in order to foster convergence amongst different land surface models on the biogeophysical effects of forests. Overall, this study demonstrates the potential of comparing sub-grid model output to local observations to improve current land surface models’ ability to simulate land cover change effects, which is a promising approach to reduce uncertainties in future assessments of land use impacts on climate.


2013 ◽  
Vol 10 (7) ◽  
pp. 8421-8465 ◽  
Author(s):  
P. Trambauer ◽  
E. Dutra ◽  
S. Maskey ◽  
M. Werner ◽  
F. Pappenberger ◽  
...  

Abstract. Evaporation is a key process in the water cycle, with implications ranging from water management, to weather forecast and climate change assessments. The estimation of continental evaporation fluxes is complex and typically relies on continental-scale hydrological or land-surface models. However, it appears that most global or continental-scale hydrological models underestimate evaporative fluxes in some regions of Africa, and as a result overestimate stream flow. Other studies suggest that land-surface models may overestimate evaporative fluxes. In this study, we computed actual evaporation for the African continent using a continental version of the global hydrological model PCR-GLOBWB, which is based on a water balance approach. Results are compared with other independently computed evaporation products: the evaporation results from the ECMWF reanalysis ERA-Interim and ERA-Land (both based on the energy balance approach), the MOD16 evaporation product, and the GLEAM product. Three other alternative versions of the PCR-GLOBWB hydrological model were also considered. This resulted in eight products of actual evaporation, which were compared in distinct regions of the African continent spanning different climatic regimes. Annual totals, spatial patterns and seasonality were studied and compared through visual inspection and statistical methods. The comparison shows that the representation of irrigation areas has an insignificant contribution to the actual evaporation at a continental scale with a 0.5° spatial resolution. The choice of meteorological forcing data has a larger effect on the evaporation results, especially in the case of the precipitation input as different precipitation input resulted in significantly different evaporation in some of the studied regions. ERA-Interim evaporation is generally the highest of the selected products followed by ERA-Land evaporation. The satellite based products (GLEAM and MOD16) do not show regular behaviour when compared to the other products, though this depends on the region and the season considered. The results from this study allow for a better understanding of the differences between products in each climatic region. Through an improved understanding of the causes of differences between these products and their uncertainty, this study provides information to improve the quality of evaporation products for the African continent and, consequently, leads to improved water resources assessments at regional scale.


2019 ◽  
Vol 23 (9) ◽  
pp. 3735-3764 ◽  
Author(s):  
Fuad Yassin ◽  
Saman Razavi ◽  
Mohamed Elshamy ◽  
Bruce Davison ◽  
Gonzalo Sapriza-Azuri ◽  
...  

Abstract. Reservoirs significantly affect flow regimes in watershed systems by changing the magnitude and timing of streamflows. Failure to represent these effects limits the performance of hydrological and land-surface models (H-LSMs) in the many highly regulated basins across the globe and limits the applicability of such models to investigate the futures of watershed systems through scenario analysis (e.g., scenarios of climate, land use, or reservoir regulation changes). An adequate representation of reservoirs and their operation in an H-LSM is therefore essential for a realistic representation of the downstream flow regime. In this paper, we present a general parametric reservoir operation model based on piecewise-linear relationships between reservoir storage, inflow, and release to approximate actual reservoir operations. For the identification of the model parameters, we propose two strategies: (a) a “generalized” parameterization that requires a relatively limited amount of data and (b) direct calibration via multi-objective optimization when more data on historical storage and release are available. We use data from 37 reservoir case studies located in several regions across the globe for developing and testing the model. We further build this reservoir operation model into the MESH (Modélisation Environmentale-Surface et Hydrologie) modeling system, which is a large-scale H-LSM. Our results across the case studies show that the proposed reservoir model with both parameter-identification strategies leads to improved simulation accuracy compared with the other widely used approaches for reservoir operation simulation. We further show the significance of enabling MESH with this reservoir model and discuss the interdependent effects of the simulation accuracy of natural processes and that of reservoir operations on the overall model performance. The reservoir operation model is generic and can be integrated into any H-LSM.


Sign in / Sign up

Export Citation Format

Share Document