scholarly journals Supplementary material to "A Bayesian data assimilation framework for lake 3D hydrodynamic models with a physics-preserving particle filtering method using SPUX-MITgcm v1"

Author(s):  
Artur Safin ◽  
Damien Bouffard ◽  
Firat Ozdemir ◽  
Cintia L. Ramón ◽  
James Runnalls ◽  
...  
2020 ◽  
Vol 8 (3) ◽  
pp. 1215-1235
Author(s):  
Linjie Wen ◽  
Jiangqi Wu ◽  
Linjun Lu ◽  
Jinglai Li

2021 ◽  
Author(s):  
Artur Safin ◽  
Damien Bouffard ◽  
Firat Ozdemir ◽  
Cintia L. Ramón ◽  
James Runnalls ◽  
...  

Abstract. We present a Bayesian inference for a three-dimensional hydrodynamic model of Lake Geneva with stochastic weather forcing and high-frequency observational datasets. This is achieved by coupling a Bayesian inference package, SPUX, with a hydrodynamics package, MITgcm, into a single framework, SPUX-MITgcm. To mitigate uncertainty in the atmospheric forcing, we use a smoothed particle Markov chain Monte Carlo method, where the intermediate model state posteriors are resampled in accordance with their respective observational likelihoods. To improve the assimilation of remotely sensed temperature, we develop a bi-directional Long Short-Term Memory (Bi-LSTM) neural network to estimate lake skin temperature from a history of hydrodynamic bulk temperature predictions and atmospheric data. This study analyzes the benefit and costs of such state of the art computationally expensive calibration and assimilation method for lakes.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750008
Author(s):  
Feng Bao ◽  
Yanzhao Cao ◽  
Xiaoying Han ◽  
Jinglai Li

We propose an efficient algorithm to perform nonlinear data assimilation for Korteweg–de Vries solitons. In particular we develop a reduced particle filtering method to reduce the dimension of the problem. The method decomposes a solitonic pulse into a clean soliton and small radiative noise, and instead of inferring the complete pulse profile, we only infer the two soliton parameters with particle filter. Numerical examples are provided to demonstrate that the proposed method can provide rather accurate results, while being much more computationally affordable than a standard particle filter.


Author(s):  
Changhu Xue ◽  
Guigen Nie ◽  
Jie Dong ◽  
Shuguang Wu ◽  
Jing Wang ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1090
Author(s):  
Wenxu Wang ◽  
Damián Marelli ◽  
Minyue Fu

A popular approach for solving the indoor dynamic localization problem based on WiFi measurements consists of using particle filtering. However, a drawback of this approach is that a very large number of particles are needed to achieve accurate results in real environments. The reason for this drawback is that, in this particular application, classical particle filtering wastes many unnecessary particles. To remedy this, we propose a novel particle filtering method which we call maximum likelihood particle filter (MLPF). The essential idea consists of combining the particle prediction and update steps into a single one in which all particles are efficiently used. This drastically reduces the number of particles, leading to numerically feasible algorithms with high accuracy. We provide experimental results, using real data, confirming our claim.


Sign in / Sign up

Export Citation Format

Share Document