Supplementary material to "Landslides Data Assimilation Using TRIGRS Based on Particle Filtering"

Author(s):  
Changhu Xue ◽  
Guigen Nie ◽  
Jie Dong ◽  
Shuguang Wu ◽  
Jing Wang ◽  
...  
2018 ◽  
Vol 25 (4) ◽  
pp. 765-807 ◽  
Author(s):  
Alban Farchi ◽  
Marc Bocquet

Abstract. Particle filtering is a generic weighted ensemble data assimilation method based on sequential importance sampling, suited for nonlinear and non-Gaussian filtering problems. Unless the number of ensemble members scales exponentially with the problem size, particle filter (PF) algorithms experience weight degeneracy. This phenomenon is a manifestation of the curse of dimensionality that prevents the use of PF methods for high-dimensional data assimilation. The use of local analyses to counteract the curse of dimensionality was suggested early in the development of PF algorithms. However, implementing localisation in the PF is a challenge, because there is no simple and yet consistent way of gluing together locally updated particles across domains. In this article, we review the ideas related to localisation and the PF in the geosciences. We introduce a generic and theoretical classification of local particle filter (LPF) algorithms, with an emphasis on the advantages and drawbacks of each category. Alongside the classification, we suggest practical solutions to the difficulties of local particle filtering, which lead to new implementations and improvements in the design of LPF algorithms. The LPF algorithms are systematically tested and compared using twin experiments with the one-dimensional Lorenz 40-variables model and with a two-dimensional barotropic vorticity model. The results illustrate the advantages of using the optimal transport theory to design the local analysis. With reasonable ensemble sizes, the best LPF algorithms yield data assimilation scores comparable to those of typical ensemble Kalman filter algorithms, even for a mildly nonlinear system.


2016 ◽  
Vol 144 (1) ◽  
pp. 409-427 ◽  
Author(s):  
Julian Tödter ◽  
Paul Kirchgessner ◽  
Lars Nerger ◽  
Bodo Ahrens

Abstract This work assesses the large-scale applicability of the recently proposed nonlinear ensemble transform filter (NETF) in data assimilation experiments with the NEMO ocean general circulation model. The new filter constitutes a second-order exact approximation to fully nonlinear particle filtering. Thus, it relaxes the Gaussian assumption contained in ensemble Kalman filters. The NETF applies an update step similar to the local ensemble transform Kalman filter (LETKF), which allows for efficient and simple implementation. Here, simulated observations are assimilated into a simplified ocean configuration that exhibits globally high-dimensional dynamics with a chaotic mesoscale flow. The model climatology is used to initialize an ensemble of 120 members. The number of observations in each local filter update is of the same order resulting from the use of a realistic oceanic observation scenario. Here, an importance sampling particle filter (PF) would require at least 106 members. Despite the relatively small ensemble size, the NETF remains stable and converges to the truth. In this setup, the NETF achieves at least the performance of the LETKF. However, it requires a longer spinup period because the algorithm only relies on the particle weights at the analysis time. These findings show that the NETF can successfully deal with a large-scale assimilation problem in which the local observation dimension is of the same order as the ensemble size. Thus, the second-order exact NETF does not suffer from the PF’s curse of dimensionality, even in a deterministic system.


Sign in / Sign up

Export Citation Format

Share Document