scholarly journals The Cache la Poudre river basin snow water equivalent modeling with NewAge-JGrass

2013 ◽  
Vol 6 (3) ◽  
pp. 4447-4474 ◽  
Author(s):  
G. Formetta ◽  
S. K. Kampf ◽  
O. David ◽  
R. Rigon

Abstract. The paper presents a snow water equivalent model as part of the hydrological modeling system NewAge-JGrass. The model take in account of the main physical processes influencing the snow melting (precipitation form separation, melting and freezing modeling) coupled with the snowpack mass conservation equation. The snow melting depends not only on the air temperature but also on the radiation received by the pixel. The model is perfectly integrated in the NewAge-JGrass modeling system and uses many of its components such as shortwave radiation balance, krigings and automatic calibration algorithms. As all the NewAge-JGrass components, the presented model can be executed both in raster and in vector mode and the simulation time step can be daily, hourly or sub-hourly as the user needs. The model is applied on the Cache la Poudre river basin (CO, USA). Three are the applications presented in the paper. Firstly, the simulation of snow water equivalent in three different measurement stations is performed. Model parameters are calibrated and model performances are quantitatively computed by comparing simulated and measured snow water equivalent time series. Indices of goodness of fit such as Kling–Gupta Efficiency, Index of Agreement and Percentage Bias are computed. Secondly, the representativeness of the model parameters in different locations is discussed. Finally a raster mode application is performed: snow water equilvalent maps on the whole Cache la Poudre river are computed. In all the applications the model performance are satisfactory in term of goodness of fitting measured snow water equivalent time series. The integration of the model in the NewAge-JGrass system allows the used to o enjoy all the component of the system: input data computation, output maps visualizetion in the GIS JGrass, model parameters automatic calibration.

2014 ◽  
Vol 8 (2) ◽  
pp. 521-536 ◽  
Author(s):  
J. L. McCreight ◽  
E. E. Small

Abstract. Bulk density is a fundamental property of snow relating its depth and mass. Previously, two simple models of bulk density (depending on snow depth, date, and location) have been developed to convert snow depth observations to snow water equivalent (SWE) estimates. However, these models were not intended for application at the daily time step. We develop a new model of bulk density for the daily time step and demonstrate its improved skill over the existing models. Snow depth and density are negatively correlated at short (10 days) timescales while positively correlated at longer (90 days) timescales. We separate these scales of variability by modeling smoothed, daily snow depth (long timescales) and the observed positive and negative anomalies from the smoothed time series (short timescales) as separate terms. A climatology of fit is also included as a predictor variable. Over half a million daily observations of depth and SWE at 345 snowpack telemetry (SNOTEL) sites are used to fit models and evaluate their performance. For each location, we train the three models to the neighboring stations within 70 km, transfer the parameters to the location to be modeled, and evaluate modeled time series against the observations at that site. Our model exhibits improved statistics and qualitatively more-realistic behavior at the daily time step when sufficient local training data are available. We reduce density root mean square error (RMSE) by 9.9 and 4.5% compared to previous models while increasing R2 from 0.46 to 0.52 to 0.56 across models. Focusing on the 21-day window around peak SWE in each water year, our model reduces density RMSE by 24 and 17.4% relative to the previous models, with R2 increasing from 0.55 to 0.58 to 0.71 across models. Removing the challenge of parameter transfer over the full observational record increases R2 scores for both the existing and new models, but the gain is greatest for the new model (R2 = 0.75). Our model shows general improvement over existing models when data are more frequent than once every 5 days and at least 3 stations are available for training.


2019 ◽  
Vol 51 (2) ◽  
pp. 308-321 ◽  
Author(s):  
Vytautas Akstinas ◽  
Diana Meilutytė-Lukauskienė ◽  
Jūratė Kriaučiūnienė ◽  
Diana Šarauskienė

Abstract The Nemunas River basin falls within the territories of five different countries – Belarus, Lithuania, Russia, Poland and Latvia. In general, the beginning of spring floods highly depends on rapid rise of air temperature, heavy precipitation and sudden snow melting in the analysed basin. In this paper, the conditions of formation and consequences of two catastrophic floods in 1958 and 1979 in the Nemunas River basin were studied regarding the hydrometeorological parameters (maximum snow water equivalent before the beginning of flood and precipitation amount during the flood) as well as runoff coefficients for each selected catastrophic flood. Differences between the main drivers and evolution of these floods were analysed. Spatial distribution of maximum snow water equivalent and precipitation, as well as runoff coefficient in different parts of the river basin, were identified as having the most significant impact on the formation of the studied catastrophic floods.


2021 ◽  
Vol 11 (18) ◽  
pp. 8365
Author(s):  
Liming Gao ◽  
Lele Zhang ◽  
Yongping Shen ◽  
Yaonan Zhang ◽  
Minghao Ai ◽  
...  

Accurate simulation of snow cover process is of great significance to the study of climate change and the water cycle. In our study, the China Meteorological Forcing Dataset (CMFD) and ERA-Interim were used as driving data to simulate the dynamic changes in snow depth and snow water equivalent (SWE) in the Irtysh River Basin from 2000 to 2018 using the Noah-MP land surface model, and the simulation results were compared with the gridded dataset of snow depth at Chinese meteorological stations (GDSD), the long-term series of daily snow depth dataset in China (LSD), and China’s daily snow depth and snow water equivalent products (CSS). Before the simulation, we compared the combinations of four parameterizations schemes of Noah-MP model at the Kuwei site. The results show that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation process, while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow surface albedo (ALB) schemes mainly affect the melting process. The effect of STC on the simulation results was much higher than the other three schemes; when STC uses a fully implicit scheme, the error of simulated snow depth and snow water equivalent is much greater than that of a semi-implicit scheme. At the basin scale, the accuracy of snow depth modeled by using CMFD and ERA-Interim is higher than LSD and CSS snow depth based on microwave remote sensing. In years with high snow cover, LSD and CSS snow depth data are seriously underestimated. According to the results of model simulation, it is concluded that the snow depth and snow water equivalent in the north of the basin are higher than those in the south. The average snow depth, snow water equivalent, snow days, and the start time of snow accumulation (STSA) in the basin did not change significantly during the study period, but the end time of snow melting was significantly advanced.


2004 ◽  
Vol 18 (9) ◽  
pp. 1595-1611 ◽  
Author(s):  
N. P. Molotch ◽  
S. R. Fassnacht ◽  
R. C. Bales ◽  
S. R. Helfrich

2021 ◽  
Author(s):  
Thibault Mathevet ◽  
Cyril Thébault ◽  
Jérôme Mansons ◽  
Matthieu Le Lay ◽  
Audrey Valery ◽  
...  

<p>The aim of this communication is to present a study on climate variability and change on snow water equivalent (SWE) and streamflow over the 1900-2100 period in a mediteranean and moutainuous area.  It is based on SWE and streamflow observations, past reconstructions (1900-2018) and future GIEC scenarii (up to 2100) of some snow courses and hydrological stations situated within the French Southern Alps (Mercantour Natural Parc). This has been conducted by EDF (French hydropower company) and Mercantour Natural Parc.</p><p>This issue became particularly important since a decade, especially in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production or impacts on mountainous ecosystems (fauna and flora). As a water resources manager in French mountainuous regions, EDF developed and managed a large hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurements of a hundred of snow courses within the French Alps. EDF have been operating an automatic SWE sensors network, complementary to historical snow course network. Based on numerous SWE observations time-series and snow modelization (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2018 period. These reconstructions have been extented to 1900 using 20 CR (20<sup>th</sup> century reanalyses by NOAA) reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii (+4.5 W/m² and + 8.5 W/m² hypotheses). In the scope of this study, Mercantour Natural Parc is particularly interested by snow scenarii in the future and its impacts on their local flora and fauna.</p><p>Considering observations within Durance watershed and Mercantour region, this communication focuses on: (1) long term (1900-2018) analyses of variability and trend of hydrometeorological and snow variables (total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length, streamflow regimes) , (2) long term variability of snow and hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii.</p><p>Comparing old period (1950-1984) to recent period (1984-2018), quantitative results within these regions roughly shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season duration by 15 days. Characterization of the increase of snow line height and SWE reduction are particularly important at a local and watershed scale. Then, this communication focuses on impacts on long-term time scales (2050, 2100). This long term change of snow dynamics within moutainuous regions both impacts (1) water resources management, (2) snow resorts and artificial snow production developments or (3) ecosystems dynamics.Connected to the evolution of snow seasonality, the impacts on hydrological regime and some streamflow signatures allow to characterize the possible evolution of water resources in this mediteranean and moutianuous region This study allowed to provide some local quantitative scenarii.</p>


2018 ◽  
Vol 32 (17) ◽  
pp. 2748-2764 ◽  
Author(s):  
Ross Brown ◽  
Dominique Tapsoba ◽  
Chris Derksen

2020 ◽  
Author(s):  
Gabriele Schwaizer ◽  
Lars Keuris ◽  
Thomas Nagler ◽  
Chris Derksen ◽  
Kari Luojus ◽  
...  

<p>Seasonal snow is an important component of the global climate system. It is highly variable in space and time and sensitive to short term synoptic scale processes and long term climate-induced changes of temperature and precipitation. Current snow products derived from various satellite data applying different algorithms show significant discrepancies in extent and snow mass, a potential source for biases in climate monitoring and modelling. The recently launched ESA CCI+ Programme addresses seasonal snow as one of 9 Essential Climate Variables to be derived from satellite data.</p><p>In the snow_cci project, scheduled for 2018 to 2021 in its first phase, reliable fully validated processing lines are developed and implemented. These tools are used to generate homogeneous multi-sensor time series for the main parameters of global snow cover focusing on snow extent and snow water equivalent. Using GCOS guidelines, the requirements for these parameters are assessed and consolidated using the outcome of workshops and questionnaires addressing users dealing with different climate applications. Snow extent product generation applies algorithms accounting for fractional snow extent and cloud screening in order to generate consistent daily products for snow on the surface (viewable snow) and snow on the surface corrected for forest masking (snow on ground) with global coverage. Input data are medium resolution optical satellite images (AVHRR-2/3, AATSR, MODIS, VIIRS, SLSTR/OLCI) from 1981 to present. An iterative development cycle is applied including homogenisation of the snow extent products from different sensors by minimizing the bias. Independent validation of the snow products is performed for different seasons and climate zones around the globe from 1985 onwards, using as reference high resolution snow maps from Landsat and Sentinel- 2as well as in-situ snow data following standardized validation protocols.</p><p>Global time series of daily snow water equivalent (SWE) products are generated from passive microwave data from SMMR, SSM/I, and AMSR from 1978 onwards, combined with in-situ snow depth measurements. Long-term stability and quality of the product is assessed using independent snow survey data and by intercomparison with the snow information from global land process models.</p><p>The usability of the snow_cci products is ensured through the Climate Research Group, which performs case studies related to long term trends of seasonal snow, performs evaluations of CMIP-6 and other snow-focused climate model experiments, and applies the data for simulation of Arctic hydrological regimes.</p><p>In this presentation, we summarize the requirements and product specifications for the snow extent and SWE products, with a focus on climate applications. We present an overview of the algorithms and systems for generation of the time series. The 40 years (from 1980 onwards) time series of daily fractional snow extent products from AVHRR with 5 km pixel spacing, and the 20-year time series from MODIS (1 km pixel spacing) as well as the coarse resolution (25 km pixel spacing) of daily SWE products from 1978 onwards will be presented along with first results of the multi-sensor consistency checks and validation activities.</p>


2020 ◽  
Vol 21 (11) ◽  
pp. 2713-2733 ◽  
Author(s):  
Graham A. Sexstone ◽  
Colin A. Penn ◽  
Glen E. Liston ◽  
Kelly E. Gleason ◽  
C. David Moeser ◽  
...  

AbstractThis study evaluated the spatial variability of trends in simulated snowpack properties across the Rio Grande headwaters of Colorado using the SnowModel snow evolution modeling system. SnowModel simulations were performed using a grid resolution of 100 m and 3-hourly time step over a 34-yr period (1984–2017). Atmospheric forcing was provided by phase 2 of the North American Land Data Assimilation System, and the simulations accounted for temporal changes in forest canopy from bark beetle and wildfire disturbances. Annual summary values of simulated snowpack properties [snow metrics; e.g., peak snow water equivalent (SWE), snowmelt rate and timing, and snow sublimation] were used to compute trends across the domain. Trends in simulated snow metrics varied depending on elevation, aspect, and land cover. Statistically significant trends did not occur evenly within the basin, and some areas were more sensitive than others. In addition, there were distinct trend differences between the different snow metrics. Upward trends in mean winter air temperature were 0.3°C decade−1, and downward trends in winter precipitation were −52 mm decade−1. Middle elevation zones, coincident with the greatest volumetric snow water storage, exhibited the greatest sensitivity to changes in peak SWE and snowmelt rate. Across the Rio Grande headwaters, snowmelt rates decreased by 20% decade−1, peak SWE decreased by 14% decade−1, and total snowmelt quantity decreased by 13% decade−1. These snow trends are in general agreement with widespread snow declines that have been reported for this region. This study further quantifies these snow declines and provides trend information for additional snow variables across a greater spatial coverage at finer spatial resolution.


Sign in / Sign up

Export Citation Format

Share Document