scholarly journals Refinement of a model for evaluating the population exposure in an urban area

2014 ◽  
Vol 7 (2) ◽  
pp. 2335-2375
Author(s):  
J. Soares ◽  
A. Kousa ◽  
J. Kukkonen ◽  
L. Matilainen ◽  
L. Kangas ◽  
...  

Abstract. A mathematical model is presented for the determination of human exposure to ambient air pollution in an urban area; the model is a refined version of a previously developed mathematical model EXPAND (EXposure model for Particulate matter And Nitrogen oxiDes). The model combines predicted concentrations, information on people's activities and location of the population to evaluate the spatial and temporal variation of average exposure of the urban population to ambient air pollution in different microenvironments. The revisions of the modelling system containing the EXPAND model include improvements of the associated urban emission and dispersion modelling system, an improved treatment of the time-use of population, and better treatment for the infiltration coefficients from outdoor to indoor air. The revised model version can also be used for evaluating intake fractions for various pollutants, source categories and population subgroups. We present numerical results on annual spatial concentration, time activity and population exposures to PM2.5 in the Helsinki Metropolitan Area and Helsinki for 2008 and 2009, respectively. Approximately 60% of the total exposure occurred at home, 17% at work, 4% in traffic and 19% in other micro-environments. The population exposure originated from the long range transported background concentrations was responsible for a major fraction, 86%, of the total exposure. The largest local contributors were vehicular emissions (12%) and shipping (2%).

2014 ◽  
Vol 7 (5) ◽  
pp. 1855-1872 ◽  
Author(s):  
J. Soares ◽  
A. Kousa ◽  
J. Kukkonen ◽  
L. Matilainen ◽  
L. Kangas ◽  
...  

Abstract. A mathematical model is presented for the determination of human exposure to ambient air pollution in an urban area; the model is a refined version of a previously developed mathematical model EXPAND (EXposure model for Particulate matter And Nitrogen oxiDes). The model combines predicted concentrations, information on people's activities and location of the population to evaluate the spatial and temporal variation of average exposure of the urban population to ambient air pollution in different microenvironments. The revisions of the modelling system containing the EXPAND model include improvements of the associated urban emission and dispersion modelling system, an improved treatment of the time use of population, and better treatment for the infiltration coefficients from outdoor to indoor air. The revised model version can also be used for estimating intake fractions for various pollutants, source categories and population subgroups. We present numerical results on annual spatial concentration, time activity and population exposures to PM2.5 in the Helsinki Metropolitan Area and Helsinki for 2008 and 2009, respectively. Approximately 60% of the total exposure occurred at home, 17% at work, 4% in traffic and 19% in other microenvironments in the Helsinki Metropolitan Area. The population exposure originating from the long-range transported background concentrations was responsible for a major fraction, 86%, of the total exposure in Helsinki. The largest local contributors were vehicular emissions (12%) and shipping (2%).


2002 ◽  
Vol 36 (13) ◽  
pp. 2109-2119 ◽  
Author(s):  
Anu Kousa ◽  
Jaakko Kukkonen ◽  
Ari Karppinen ◽  
Päivi Aarnio ◽  
Tarja Koskentalo

Author(s):  
Martin Otto Paul Ramacher ◽  
Matthias Karl

To evaluate the effectiveness of alternative policies and measures to reduce air pollution effects on urban citizen’s health, population exposure assessments are needed. Due to road traffic emissions being a major source of emissions and exposure in European cities, it is necessary to account for differentiated transport environments in population dynamics for exposure studies. In this study, we applied a modelling system to evaluate population exposure in the urban area of Hamburg in 2016. The modeling system consists of an urban-scale chemistry transport model to account for ambient air pollutant concentrations and a dynamic time-microenvironment-activity (TMA) approach, which accounts for population dynamics in different environments as well as for infiltration of outdoor to indoor air pollution. We integrated different modes of transport in the TMA approach to improve population exposure assessments in transport environments. The newly developed approach reports 12% more total exposure to NO2 and 19% more to PM2.5 compared with exposure estimates based on residential addresses. During the time people spend in different transport environments, the in-car environment contributes with 40% and 33% to the annual sum of exposure to NO2 and PM2.5, in the walking environment with 26% and 30%, in the cycling environment with 15% and 17% and other environments (buses, subway, suburban, and regional trains) with less than 10% respectively. The relative contribution of road traffic emissions to population exposure is highest in the in-car environment (57% for NO2 and 15% for PM2.5). Results for population-weighted exposure revealed exposure to PM2.5 concentrations above the WHO AQG limit value in the cycling environment. Uncertainties for the exposure contributions arising from emissions and infiltration from outdoor to indoor pollutant concentrations range from −12% to +7% for NO2 and PM2.5. The developed “dynamic transport approach” is integrated in a computationally efficient exposure model, which is generally applicable in European urban areas. The presented methodology is promoted for use in urban mobility planning, e.g., to investigate on policy-driven changes in modal split and their combined effect on emissions, population activity and population exposure.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 467 ◽  
Author(s):  
Heli Lehtomäki ◽  
Camilla Geels ◽  
Jørgen Brandt ◽  
Shilpa Rao ◽  
Katarina Yaramenka ◽  
...  

Particulate matter air pollution is widely considered as the leading environmental cause of premature mortality. However, there are substantial differences in the estimated health burden between the assessments. The aim of this work is to quantify the deaths attributable to ambient air pollution in Nordic countries applying selected assessment tools and approaches, and to identify the main disparities. We quantified and compared the estimated deaths from three health risk assessment tools and from a set of different concentration-response functions. A separate analysis was conducted for the impacts of spatial resolution of the exposure model on the estimated deaths. We found that the death rate (deaths per million) attributable to PM2.5 and O3 were the highest in Denmark and the lowest in Iceland. In the five Nordic countries, the results between the three tools ranged from 8500 to 11,400 for PM2.5 related deaths, and for ozone from 230 to 260 deaths in 2015. Substantially larger differences were found between five concentration-response functions. The shape of concentration-response functions, and applied theoretical thresholds led to substantial differences in the estimated deaths. Nordic countries are especially sensitive to theoretical thresholds due to low exposures. Sensitivity analysis demonstrated that when using spatial exposure assessment methods, high spatial resolution is necessary to avoid underestimation of exposures and health effects.


Epidemiology ◽  
1998 ◽  
Vol 9 (Supplement) ◽  
pp. S39
Author(s):  
Pawel Gorvski ◽  
Bogdan Wojtyniak ◽  
Irena Szutowicz

Author(s):  
Ernesto Sánchez-Triana ◽  
Bjorn Larsen ◽  
Santiago Enriquez ◽  
Andreia Costa Santos

Air pollution of fine particulates (PM2.5) is a leading cause of mortality worldwide. It is estimated that ambient PM2.5 air pollution results in between 4.1 million and 8.9 million premature deaths annually. According to the World Bank, the health effects of ambient PM2.5 air pollution had a cost of $6.4 trillion in purchasing power parity (PPP) adjusted dollars in 2019, equivalent to 4.8% of global gross domestic product (PPP adjusted) that year. Estimating the health effects and cost of ambient PM2.5 air pollution involves three steps: (1) estimating population exposure to pollution; (2) estimating the health effects of such exposure; and (3) assigning a monetary value to the illnesses and premature deaths caused by ambient air pollution. Estimating population exposure to ambient PM2,5 has gone from predominantly using ground level monitoring data mainly in larger cities to estimates of nationwide population weighted exposures based on satellite imagery and chemical transport models along with ground level monitoring data. The Global Burden of Disease 2010 (GBD 2010) provided for the first time national, regional and global estimates of exposures to ambient PM2.5. The GBD exposure estimates have also evolved substantially from 2010 to 2019, especially national estimates in South Asia, the Middle East and North Africa, Sub-Saharan Africa and Latin America and the Caribbean. Estimation of health effects of ambient PM2.5 has also undergone substantial developments during the last two decades. These developments involve: i) going from largely estimating health effects associated with variations in daily exposures to estimating health effects of annual exposure; ii) going from estimating all-cause mortality or mortality from broad disease categories (i.e., cardiopulmonary diseases) to estimating mortality from specific diseases; and iii) being able to estimate health effects over a wide range of exposure that reflect ambient and household air pollution exposure levels in low- and middle-income countries. As to monetary valuation of health effects of ambient air pollution, estimates in most low- and middle-income countries still rely on benefit transfer of values of statistical life (VSL) from high-income countries.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Chi-Yung Cheng ◽  
Shih-Yu Cheng ◽  
Chien-Chih Chen ◽  
Hsiu-Yung Pan ◽  
Kuan-Han Wu ◽  
...  

2017 ◽  
Vol 234 ◽  
pp. 279-298 ◽  
Author(s):  
Kristin Aunan ◽  
Mette Halskov Hansen ◽  
Shuxiao Wang

AbstractThis introduction provides an overview and analysis of key scientific data regarding air pollution in China. It constitutes a reference for understanding how policymakers, media and population in China make sense of and deal with air pollution, as discussed in the other articles of the section. We summarize the major characteristics and trends regarding air pollution in China, including its main sources and composition, levels of population exposure across the country, attributable mortality, and mitigation efforts. We also compare current levels of air pollution in China with other parts of the world and in a historical perspective. While the situation remains dire in many regions, particularly the Northeast, we conclude that there are signs of relief, or at least a halt to the increase in ambient air pollution levels. At the same time, critical issues regarding unequal levels of exposure remain, and health damaging levels of air pollution in cities will undoubtedly remain high for a long time to come. The rural population residing in areas close to industry and polluted cities and still depending on solid household fuels will likely be the worst off when it comes to air pollution exposure.


Sign in / Sign up

Export Citation Format

Share Document