THE ASSESSMENT OF POPULATION EXPOSURE TO AMBIENT AIR POLLUTION IN POLAND IN 1993 AND 1996

Epidemiology ◽  
1998 ◽  
Vol 9 (Supplement) ◽  
pp. S39
Author(s):  
Pawel Gorvski ◽  
Bogdan Wojtyniak ◽  
Irena Szutowicz
2014 ◽  
Vol 7 (2) ◽  
pp. 2335-2375
Author(s):  
J. Soares ◽  
A. Kousa ◽  
J. Kukkonen ◽  
L. Matilainen ◽  
L. Kangas ◽  
...  

Abstract. A mathematical model is presented for the determination of human exposure to ambient air pollution in an urban area; the model is a refined version of a previously developed mathematical model EXPAND (EXposure model for Particulate matter And Nitrogen oxiDes). The model combines predicted concentrations, information on people's activities and location of the population to evaluate the spatial and temporal variation of average exposure of the urban population to ambient air pollution in different microenvironments. The revisions of the modelling system containing the EXPAND model include improvements of the associated urban emission and dispersion modelling system, an improved treatment of the time-use of population, and better treatment for the infiltration coefficients from outdoor to indoor air. The revised model version can also be used for evaluating intake fractions for various pollutants, source categories and population subgroups. We present numerical results on annual spatial concentration, time activity and population exposures to PM2.5 in the Helsinki Metropolitan Area and Helsinki for 2008 and 2009, respectively. Approximately 60% of the total exposure occurred at home, 17% at work, 4% in traffic and 19% in other micro-environments. The population exposure originated from the long range transported background concentrations was responsible for a major fraction, 86%, of the total exposure. The largest local contributors were vehicular emissions (12%) and shipping (2%).


Author(s):  
Ernesto Sánchez-Triana ◽  
Bjorn Larsen ◽  
Santiago Enriquez ◽  
Andreia Costa Santos

Air pollution of fine particulates (PM2.5) is a leading cause of mortality worldwide. It is estimated that ambient PM2.5 air pollution results in between 4.1 million and 8.9 million premature deaths annually. According to the World Bank, the health effects of ambient PM2.5 air pollution had a cost of $6.4 trillion in purchasing power parity (PPP) adjusted dollars in 2019, equivalent to 4.8% of global gross domestic product (PPP adjusted) that year. Estimating the health effects and cost of ambient PM2.5 air pollution involves three steps: (1) estimating population exposure to pollution; (2) estimating the health effects of such exposure; and (3) assigning a monetary value to the illnesses and premature deaths caused by ambient air pollution. Estimating population exposure to ambient PM2,5 has gone from predominantly using ground level monitoring data mainly in larger cities to estimates of nationwide population weighted exposures based on satellite imagery and chemical transport models along with ground level monitoring data. The Global Burden of Disease 2010 (GBD 2010) provided for the first time national, regional and global estimates of exposures to ambient PM2.5. The GBD exposure estimates have also evolved substantially from 2010 to 2019, especially national estimates in South Asia, the Middle East and North Africa, Sub-Saharan Africa and Latin America and the Caribbean. Estimation of health effects of ambient PM2.5 has also undergone substantial developments during the last two decades. These developments involve: i) going from largely estimating health effects associated with variations in daily exposures to estimating health effects of annual exposure; ii) going from estimating all-cause mortality or mortality from broad disease categories (i.e., cardiopulmonary diseases) to estimating mortality from specific diseases; and iii) being able to estimate health effects over a wide range of exposure that reflect ambient and household air pollution exposure levels in low- and middle-income countries. As to monetary valuation of health effects of ambient air pollution, estimates in most low- and middle-income countries still rely on benefit transfer of values of statistical life (VSL) from high-income countries.


2002 ◽  
Vol 36 (13) ◽  
pp. 2109-2119 ◽  
Author(s):  
Anu Kousa ◽  
Jaakko Kukkonen ◽  
Ari Karppinen ◽  
Päivi Aarnio ◽  
Tarja Koskentalo

2017 ◽  
Vol 234 ◽  
pp. 279-298 ◽  
Author(s):  
Kristin Aunan ◽  
Mette Halskov Hansen ◽  
Shuxiao Wang

AbstractThis introduction provides an overview and analysis of key scientific data regarding air pollution in China. It constitutes a reference for understanding how policymakers, media and population in China make sense of and deal with air pollution, as discussed in the other articles of the section. We summarize the major characteristics and trends regarding air pollution in China, including its main sources and composition, levels of population exposure across the country, attributable mortality, and mitigation efforts. We also compare current levels of air pollution in China with other parts of the world and in a historical perspective. While the situation remains dire in many regions, particularly the Northeast, we conclude that there are signs of relief, or at least a halt to the increase in ambient air pollution levels. At the same time, critical issues regarding unequal levels of exposure remain, and health damaging levels of air pollution in cities will undoubtedly remain high for a long time to come. The rural population residing in areas close to industry and polluted cities and still depending on solid household fuels will likely be the worst off when it comes to air pollution exposure.


Author(s):  
Lars Barregard ◽  
Peter Molnàr ◽  
Jan Eiof Jonson ◽  
Leo Stockfelt

Emission of pollutants from shipping contributes to ambient air pollution. Our aim was to estimate exposure to particulate air pollution (PM2.5) and health effects from shipping in countries around the Baltic Sea, as well as effects of the sulfur regulations for fuels enforced in 2015 by the Baltic Sulfur Emission Control Area (SECA). Yearly PM2.5 emissions, from ship activity data and emission inventories in 2014 and 2016, were estimated. Concentrations and population exposure (0.1° × 0.1°) of PM2.5 were estimated from a chemical transport mode, meteorology, and population density. Excess mortality and morbidity were estimated using established exposure-response (ER) functions. Estimated mean PM2.5 per inhabitant from Baltic shipping was 0.22 µg/m3 in 2014 in ten countries, highest in Denmark (0.57 µg/m3). For the ER function with the steepest slope, the number of estimated extra premature deaths was 3413 in total, highest in Germany and lowest in Norway. It decreased by about 35% in 2016 (after SECA), a reduction of >1000 cases. In addition, 1500 non-fatal cases of ischemic heart disease and 1500 non-fatal cases of stroke in 2014 caused by Baltic shipping emissions were reduced by the same extent in 2016. In conclusion, PM2.5 emissions from Baltic shipping, and resulting health impacts decreased substantially after the SECA regulations in 2015.


2014 ◽  
Vol 7 (5) ◽  
pp. 1855-1872 ◽  
Author(s):  
J. Soares ◽  
A. Kousa ◽  
J. Kukkonen ◽  
L. Matilainen ◽  
L. Kangas ◽  
...  

Abstract. A mathematical model is presented for the determination of human exposure to ambient air pollution in an urban area; the model is a refined version of a previously developed mathematical model EXPAND (EXposure model for Particulate matter And Nitrogen oxiDes). The model combines predicted concentrations, information on people's activities and location of the population to evaluate the spatial and temporal variation of average exposure of the urban population to ambient air pollution in different microenvironments. The revisions of the modelling system containing the EXPAND model include improvements of the associated urban emission and dispersion modelling system, an improved treatment of the time use of population, and better treatment for the infiltration coefficients from outdoor to indoor air. The revised model version can also be used for estimating intake fractions for various pollutants, source categories and population subgroups. We present numerical results on annual spatial concentration, time activity and population exposures to PM2.5 in the Helsinki Metropolitan Area and Helsinki for 2008 and 2009, respectively. Approximately 60% of the total exposure occurred at home, 17% at work, 4% in traffic and 19% in other microenvironments in the Helsinki Metropolitan Area. The population exposure originating from the long-range transported background concentrations was responsible for a major fraction, 86%, of the total exposure in Helsinki. The largest local contributors were vehicular emissions (12%) and shipping (2%).


2018 ◽  
Vol 24 (1) ◽  
Author(s):  
V. S. CHAUHAN ◽  
BHANUMATI SINGH ◽  
SHREE GANESH ◽  
JAMSHED ZAIDI

Studies on air pollution in large cities of India showed that ambient air pollution concentrations are at such levels where serious health effects are possible. This paper presents overview on the status of air quality index (AQI) of Jhansi city by using multivariate statistical techniques. This base line data can help governmental and non-governmental organizations for the management of air pollution.


Sign in / Sign up

Export Citation Format

Share Document