scholarly journals New developments in the representation of Saharan dust sources in the aerosol-climate model ECHAM6-HAM2

2015 ◽  
Vol 8 (9) ◽  
pp. 7879-7910 ◽  
Author(s):  
B. Heinold ◽  
I. Tegen ◽  
K. Schepanski ◽  
J. R. Banks

Abstract. In the aerosol-climate model ECHAM6-HAM2, dust source activation (DSA) observations from Meteosat Second Generation (MSG) satellite are proposed to replace the original source area parameterization over the Sahara Desert. The new setup is tested in nudged simulations for the period 2007 to 2008. The evaluation is based on comparisons to dust emission events inferred from MSG dust index imagery, AERONET sun photometer observations, and satellite retrievals of aerosol optical thickness (AOT). The model results agree well with AERONET measurements. Good correlations between model results and MSG-SEVIRI dust AOT as well as Multi-angle Imaging Spectro-Radiometer (MISR) AOT indicate that also the spatial dust distribution is well reproduced. ECHAM6-HAM2 computes a more realistic geographical distribution and up to 20 % higher annual Saharan dust emissions, using the MSG-based source map. The representation of dust AOT is partly improved in the southern Sahara and Sahel. In addition, the spatial variability is increased towards a better agreement with observations depending on the season. Thus, using the MSG DSA map can help to circumvent the issue of uncertain soil input parameters. An important issue remains the need to improve the model representation of moist convection and stable nighttime conditions. Compared to sub-daily DSA information from MSG-SEVIRI and results from a regional model, ECHAM6-HAM2 notably underestimates the important fraction of morning dust events by the breakdown of the nocturnal low-level jet, while a major contribution is from afternoon-to-evening emissions.

2016 ◽  
Vol 9 (2) ◽  
pp. 765-777 ◽  
Author(s):  
Bernd Heinold ◽  
Ina Tegen ◽  
Kerstin Schepanski ◽  
Jamie R. Banks

Abstract. In the aerosol–climate model ECHAM6-HAM2, dust source activation (DSA) observations from Meteosat Second Generation (MSG) satellite are proposed to replace the original source area parameterization over the Sahara Desert. The new setup is tested in nudged simulations for the period 2007 to 2008. The evaluation is based on comparisons to dust emission events inferred from MSG dust index imagery, Aerosol Robotic Network (AERONET) sun photometer observations, and satellite retrievals of aerosol optical thickness (AOT).The model results agree well with AERONET measurements especially in terms of seasonal variability, and a good spatial correlation was found between model results and MSG-SEVIRI (Spinning-Enhanced Visible and InfraRed Imager) dust AOT as well as Multi-angle Imaging SpectroRadiometer (MISR) AOT. ECHAM6-HAM2 computes a more realistic geographical distribution and up to 20 % higher annual Saharan dust emissions, using the MSG-based source map. The representation of dust AOT is partly improved in the southern Sahara and Sahel. In addition, the spatial variability is increased towards a better agreement with observations depending on the season. Thus, using the MSG DSA map can help to circumvent the issue of uncertain soil input parameters.An important issue remains the need to improve the model representation of moist convection and stable nighttime conditions. Compared to sub-daily DSA information from MSG-SEVIRI and results from a regional model, ECHAM6-HAM2 notably underestimates the important fraction of morning dust events by the breakdown of the nocturnal low-level jet, while a major contribution is from afternoon-to-evening emissions.


2009 ◽  
Vol 9 (4) ◽  
pp. 1173-1189 ◽  
Author(s):  
K. Schepanski ◽  
I. Tegen ◽  
A. Macke

Abstract. We present a study of Saharan dust export towards the tropical North Atlantic using the regional dust emission, transport and deposition model LM-MUSCAT. Horizontal and vertical distribution of dust optical thickness, concentration, and dry and wet deposition rates are used to describe seasonality of dust export and deposition towards the eastern Atlantic for three typical months in different seasons. Deposition rates strongly depend on the vertical dust distribution, which differs with seasons. Furthermore the contribution of dust originating from the Bodélé Depression to Saharan dust over the Atlantic is investigated. A maximum contribution of Bodélé dust transported towards the Cape Verde Islands is evident in winter when the Bodélé source area is most active and dominant with regard to activation frequency and dust emission. Limitations of using satellite retrievals to estimate dust deposition are highlighted.


2020 ◽  
Author(s):  
János Kovács ◽  
Nadia Gammoudi ◽  
Alex Kovács ◽  
György Varga

<p>Sediment samples were collected from Morocco, Algeria and Tunisia (as possible source sediments) and from Hungary (2018 dust events), and analyzed with the following measurements: laser diffraction, X-ray powder diffraction, automated static image analysis, and scanning electron microscopy (SEM). Similarities were expected in the results of desert-originated samples and samples collected in Hungary. In order to identify the typical dust transportation routes and possible source areas, the backward trajectories were plotted using the NOAA HYSPLIT model [1].</p><p>According to particle size distribution results, active dust emission is taking place at the location of investigated desert samples, and the samples collected in Hungary can be the particles out-blown from the source areas. The evaluated mineralogical results show that every sample contains quartz and phyllosilicates. SEM micrographs and image analyses results assume that the samples collected in Hungary are from the same source area. Using HYSPLIT application, trajectories of two analyzed dust events reveal that one desert sample, as a possible source is excluded and that the two trajectories cross each other at a junction point above North Africa (depression area between the Hoggar Mts. and Tademaït). This point can be the sought possible source location. The results in this study are convenient with those founded by Blott et al. [2] and Ahmed et al. [3]</p><p><em>Acknowledgment</em></p><p>Support of the National Research, Development and Innovation Office NKFIH KH130337 and K120213 is gratefully acknowledged.</p><p>References</p><ol><li>Draxler, RR, Rolph, GD. 2012. HYSPLIT (HYbrid Single‐Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. NOAA Air Resources Laboratory: Silver Spring, MD. http://ready.arl.noaa.gov/HYSPLIT.php, last accessed 2019/03/20.</li> <li>Blott, S. J., Al-Dousari, A. M., Pye, K., Saye, S. E.: Three-dimensional characterization of sand grain shape and surface texture using a nitrogen gas adsorption technique. Journal of Sedimentary Research 74, 156–159‏ (2004).</li> <li>Ahmed, M., Al-Dousari, N., Al-Dousari, A.: The role of dominant perennial native plant species in controlling the mobile sand encroachment and fallen dust problem in Kuwait. Arabian Journal of Geosciences 9, 134 (2016)</li> </ol>


2008 ◽  
Vol 8 (4) ◽  
pp. 16061-16096 ◽  
Author(s):  
K. Schepanski ◽  
I. Tegen ◽  
A. Macke

Abstract. We present a study of Saharan dust export towards the tropical North Atlantic using the regional dust emission, transport and deposition model LM-MUSCAT. Horizontal and vertical distribution of dust optical thickness, concentration, and dry and wet deposition rates are used to describe seasonality of dust export and deposition towards the eastern Atlantic for three exemplary months in different seasons. Deposition rates strongly depend on the vertical dust distribution, which differs with seasons. Furthermore the contribution of dust originating from the Bodélé Depression to Saharan dust over the Atlantic is investigated. A maximum contribution of Bodélé dust transported towards the Cape Verde Islands is evident in winter when the Bodélé source area is most active and dominant with regard activation frequency and dust emission. Limitations of using satellite retrievals to estimate dust deposition are highlighted.


2017 ◽  
Vol 17 (16) ◽  
pp. 10163-10193 ◽  
Author(s):  
Carmen A. Friese ◽  
Johannes A. van Hateren ◽  
Christoph Vogt ◽  
Gerhard Fischer ◽  
Jan-Berend W. Stuut

Abstract. Saharan dust has a crucial influence on the earth climate system and its emission, transport and deposition are intimately related to, e.g., wind speed, precipitation, temperature and vegetation cover. The alteration in the physical and chemical properties of Saharan dust due to environmental changes is often used to reconstruct the climate of the past. However, to better interpret possible climate changes the dust source regions need to be known. By analysing the mineralogical composition of transported or deposited dust, potential dust source areas can be inferred. Summer dust transport off northwest Africa occurs in the Saharan air layer (SAL). In continental dust source areas, dust is also transported in the SAL; however, the predominant dust input occurs from nearby dust sources with the low-level trade winds. Hence, the source regions and related mineralogical tracers differ with season and sampling location. To test this, dust collected in traps onshore and in oceanic sediment traps off Mauritania during 2013 to 2015 was analysed. Meteorological data, particle-size distributions, back-trajectory and mineralogical analyses were compared to derive the dust provenance and dispersal. For the onshore dust samples, the source regions varied according to the seasonal changes in trade-wind direction. Gibbsite and dolomite indicated a Western Saharan and local source during summer, while chlorite, serpentine and rutile indicated a source in Mauritania and Mali during winter. In contrast, for the samples that were collected offshore, dust sources varied according to the seasonal change in the dust transporting air layer. In summer, dust was transported in the SAL from Mauritania, Mali and Libya as indicated by ferroglaucophane and zeolite. In winter, dust was transported with the trades from Western Sahara as indicated by, e.g., fluellite.


2012 ◽  
Vol 12 (21) ◽  
pp. 10545-10567 ◽  
Author(s):  
P. Nabat ◽  
F. Solmon ◽  
M. Mallet ◽  
J. F. Kok ◽  
S. Somot

Abstract. The present study investigates the dust emission and load over the Mediterranean basin using the coupled chemistry–aerosol–regional climate model RegCM-4. The first step of this work focuses on dust particle emission size distribution modeling. We compare a parameterization in which the emission is based on the individual kinetic energy of the aggregates striking the surface to a recent parameterization based on an analogy with the fragmentation of brittle materials. The main difference between the two dust schemes concerns the mass proportion of fine aerosol that is reduced in the case of the new dust parameterization, with consequences for optical properties. At the episodic scale, comparisons between RegCM-4 simulations, satellite and ground-based data show a clear improvement using the new dust distribution in terms of aerosol optical depth (AOD) values and geographic gradients. These results are confirmed at the seasonal scale for the investigated year 2008. This change of dust distribution has sensitive impacts on the simulated regional dust budget, notably dry dust deposition and the regional direct aerosol radiative forcing over the Mediterranean basin. In particular, we find that the new size distribution produces a higher dust deposition flux, and smaller top of atmosphere (TOA) dust radiative cooling. A multi-annual simulation is finally carried out using the new dust distribution over the period 2000–2009. The average SW radiative forcing over the Mediterranean Sea reaches −13.6 W m−2 at the surface, and −5.5 W m−2 at TOA. The LW radiative forcing is positive over the basin: 1.7 W m−2 on average over the Mediterranean Sea at the surface, and 0.6 W m−2 at TOA.


2018 ◽  
Author(s):  
Alexander J. Roberts ◽  
Margaret J. Woodage ◽  
John H. Marsham ◽  
Ellie J. Highwood ◽  
Claire L. Ryder ◽  
...  

Abstract. Global and regional models have large systematic errors in their modelled dust fields over West Africa. It is well established that cold pool outflows from moist convection (haboobs) can raise over 50 % of the dust over the Sahara and Sahel in summer, but parameterised moist convection tends to give a very poor representation of this in models. Here, we test the hypothesis that an explicit representation of convection improves haboob winds and so may reduce errors in modelled dust fields. The results show that despite varying both grid-spacing and the representation of convection there are only minor changes in dust aerosol optical depth (AOD) and dust mass loading fields between simulations. In all simulations there is an AOD deficit over the observed central Saharan dust maximum and a high bias in AOD along the west coast: both features consistent with many climate (CMIP5) models. Cold pool outflows are present in the explicit simulations and do raise dust. Consistent with this there is an improved diurnal cycle in dust-generating winds with a seasonal peak in evening winds at locations with moist convection that is absent in simulations with parameterised convection. However, the explicit convection does not change the AOD field significantly for several reasons. Firstly, the increased windiness in the evening from haboobs is approximately balanced by a reduction in morning winds associated with the breakdown of the nocturnal low-level jet (LLJ). Secondly, although explicit convection increases the frequency of the strongest winds, these are still weaker than observed, especially close to the observed summertime Saharan dust maximum: this results from the fact that although large mesoscale convective systems (and resultant cold pools) are generated, they have a lower frequency than observed and haboob winds are too weak. Finally, major impacts of the haboobs on winds occur over the Sahel, where, although dust uplift is known to occur in reality, uplift in the simulations is limited by a seasonally constant bare soil fraction in the model, together with soil moisture and clay fractions which are too restrictive of dust emission in seasonally-varying vegetated regions. For future studies, the results demonstrate 1) the improvements in behaviour produced by the explicit representation of convection, 2) the value of simultaneously evaluating both dust and winds and 3) the need to develop parameterisations of the land surface alongside those of dust-generating winds.


2012 ◽  
Vol 12 (10) ◽  
pp. 27667-27691
Author(s):  
I. Tegen ◽  
K. Schepanski ◽  
B. Heinold

Abstract. A regional-scale dust model is used to simulate Saharan dust emissions and atmospheric distributions in the years 2007 and 2008. The model results are compared to dust source activation events compiled from infrared dust index imagery from the geostationary Meteosat Second Generation (MSG) satellite. The observed morning maximum in dust source activation frequencies indicates that the breakdown of nocturnal low-level jets is responsible for a considerable number of dust source activation events in the Sahara. The comparison shows that the time of the day of the onset of dust emission is delayed in the model compared to the observations. Also, the simulated number of dust emission events associated with nocturnal low level jets in mountainous regions is underestimated in the model. The MSG dust index observations indicate a strong increase in dust source activation frequencies in the year 2008 compared to 2007, the difference between the two years is less pronounced in the model. The quantitative comparison of simulated dust optical thicknesses with observations at stations of the sunphotometer network AERONET shows, however, good agreement for both years, indicating that the number of observed dust activation events is only of limited use for estimating actual dust emission fluxes in the Sahara.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
R. Scott Van Pelt ◽  
John Tatarko ◽  
Thomas E. Gill ◽  
Chunping Chang ◽  
Junran Li ◽  
...  

AbstractIn drylands around the world, ephemeral lakes (playas) are common. Dry, wind-erodible playa sediments are potent local and regional sources of dust and PM10 (airborne particles with diameters less than 10 μm). Dust clouds often cause sudden and/or prolonged loss of visibility to travelers on downwind roadways. Lordsburg Playa, in southwestern New Mexico, USA is bisected by Interstate Highway 10. Dust storms emanating from the playa have been responsible for numerous visibility-related road closures (including 39 road closures between 2012 and 2019) causing major economic losses, in addition to well over a hundred dust-related vehicle crashes causing at least 41 lost lives in the last 53 years. In order to improve understanding of the surfaces responsible for the dust emissions, we investigated the critical wind friction velocity thresholds and the dust emissivities of surfaces representing areas typical of Lordsburg Playa’s stream deltas, shorelines, and ephemerally flooded lakebed using a Portable In-Situ Wind ERosion Laboratory (PI-SWERL). Mean threshold friction velocities for PM10 entrainment ranged from less than 0.30 m s− 1 for areas in the delta and shoreline to greater than 0.55 m s− 1 for ephemerally flooded areas of the lakebed. Similarly, we quantified mean PM10 vertical flux rates ranging from less than 500 μg m− 2 s− 1 for ephemerally flooded areas of lakebed to nearly 25,000 μg m− 2 s− 1 for disturbed delta surfaces. The unlimited PM10 supply of the relatively coarse sediments along the western shoreline is problematic and indicates that this may be the source area for longer-term visibility reducing dust events and should be a focus area for dust mitigation efforts.


2013 ◽  
Vol 13 (5) ◽  
pp. 2381-2390 ◽  
Author(s):  
I. Tegen ◽  
K. Schepanski ◽  
B. Heinold

Abstract. A regional-scale dust model is used to simulate Saharan dust emissions and atmospheric distributions in the years 2007 and 2008. The model results are compared to dust source activation events compiled from infrared dust index imagery from the geostationary Meteosat Second Generation (MSG) satellite. The observed morning maximum in dust source activation frequencies indicates that the breakdown of nocturnal low level jets is an important mechanism for dust source activation in the Sahara. The comparison shows that the time of the day of the onset of dust emission is delayed in the model compared to the observations. Also, the simulated number of dust emission events associated with nocturnal low level jets in mountainous regions is underestimated in the model. The MSG dust index observations indicate a strong increase in dust source activation frequencies in the year 2008 compared to 2007. The difference between the two years is less pronounced in the model. Observations of dust optical thickness, e.g. at stations of the sunphotometer network AERONET, do not show such increase, in agreement with the model results. This indicates that the number of observed dust activation events is only of limited use for estimating actual dust emission fluxes in the Sahara. The ability to reproduce interannual variability of Saharan dust with models remains an important challenge for understanding the controls of the atmospheric dust load.


Sign in / Sign up

Export Citation Format

Share Document