scholarly journals Can explicit convection improve modelled dust in summertime West Africa?

2018 ◽  
Author(s):  
Alexander J. Roberts ◽  
Margaret J. Woodage ◽  
John H. Marsham ◽  
Ellie J. Highwood ◽  
Claire L. Ryder ◽  
...  

Abstract. Global and regional models have large systematic errors in their modelled dust fields over West Africa. It is well established that cold pool outflows from moist convection (haboobs) can raise over 50 % of the dust over the Sahara and Sahel in summer, but parameterised moist convection tends to give a very poor representation of this in models. Here, we test the hypothesis that an explicit representation of convection improves haboob winds and so may reduce errors in modelled dust fields. The results show that despite varying both grid-spacing and the representation of convection there are only minor changes in dust aerosol optical depth (AOD) and dust mass loading fields between simulations. In all simulations there is an AOD deficit over the observed central Saharan dust maximum and a high bias in AOD along the west coast: both features consistent with many climate (CMIP5) models. Cold pool outflows are present in the explicit simulations and do raise dust. Consistent with this there is an improved diurnal cycle in dust-generating winds with a seasonal peak in evening winds at locations with moist convection that is absent in simulations with parameterised convection. However, the explicit convection does not change the AOD field significantly for several reasons. Firstly, the increased windiness in the evening from haboobs is approximately balanced by a reduction in morning winds associated with the breakdown of the nocturnal low-level jet (LLJ). Secondly, although explicit convection increases the frequency of the strongest winds, these are still weaker than observed, especially close to the observed summertime Saharan dust maximum: this results from the fact that although large mesoscale convective systems (and resultant cold pools) are generated, they have a lower frequency than observed and haboob winds are too weak. Finally, major impacts of the haboobs on winds occur over the Sahel, where, although dust uplift is known to occur in reality, uplift in the simulations is limited by a seasonally constant bare soil fraction in the model, together with soil moisture and clay fractions which are too restrictive of dust emission in seasonally-varying vegetated regions. For future studies, the results demonstrate 1) the improvements in behaviour produced by the explicit representation of convection, 2) the value of simultaneously evaluating both dust and winds and 3) the need to develop parameterisations of the land surface alongside those of dust-generating winds.

2018 ◽  
Vol 18 (12) ◽  
pp. 9025-9048 ◽  
Author(s):  
Alexander J. Roberts ◽  
Margaret J. Woodage ◽  
John H. Marsham ◽  
Ellie J. Highwood ◽  
Claire L. Ryder ◽  
...  

Abstract. Global and regional models have large systematic errors in their modelled dust fields over West Africa. It is well established that cold-pool outflows from moist convection (haboobs) can raise over 50 % of the dust over parts of the Sahara and Sahel in summer, but parameterised moist convection tends to give a very poor representation of this in models. Here, we test the hypothesis that an explicit representation of convection in the Met Office Unified Model (UM) improves haboob winds and so may reduce errors in modelled dust fields. The results show that despite varying both grid spacing and the representation of convection there are only minor changes in dust aerosol optical depth (AOD) and dust mass loading fields between simulations. In all simulations there is an AOD deficit over the observed central Saharan dust maximum and a high bias in AOD along the west coast: both features are consistent with many climate (CMIP5) models. Cold-pool outflows are present in the explicit simulations and do raise dust. Consistent with this, there is an improved diurnal cycle in dust-generating winds with a seasonal peak in evening winds at locations with moist convection that is absent in simulations with parameterised convection. However, the explicit convection does not change the AOD field in the UM significantly for several reasons. Firstly, the increased windiness in the evening from haboobs is approximately balanced by a reduction in morning winds associated with the breakdown of the nocturnal low-level jet (LLJ). Secondly, although explicit convection increases the frequency of the strongest winds, they are still weaker than observed, especially close to the observed summertime Saharan dust maximum: this results from the fact that, although large mesoscale convective systems (and resultant cold pools) are generated, they have a lower frequency than observed and haboob winds are too weak. Finally, major impacts of the haboobs on winds occur over the Sahel, where, although dust uplift is known to occur in reality, uplift in the simulations is limited by a seasonally constant bare-soil fraction in the model, together with soil moisture and clay fractions which are too restrictive of dust emission in seasonally varying vegetated regions. For future studies, the results demonstrate (1) the improvements in behaviour produced by the explicit representation of convection, (2) the value of simultaneously evaluating both dust and winds and (3) the need to develop parameterisations of the land surface alongside those of dust-generating winds.


2016 ◽  
Vol 9 (2) ◽  
pp. 765-777 ◽  
Author(s):  
Bernd Heinold ◽  
Ina Tegen ◽  
Kerstin Schepanski ◽  
Jamie R. Banks

Abstract. In the aerosol–climate model ECHAM6-HAM2, dust source activation (DSA) observations from Meteosat Second Generation (MSG) satellite are proposed to replace the original source area parameterization over the Sahara Desert. The new setup is tested in nudged simulations for the period 2007 to 2008. The evaluation is based on comparisons to dust emission events inferred from MSG dust index imagery, Aerosol Robotic Network (AERONET) sun photometer observations, and satellite retrievals of aerosol optical thickness (AOT).The model results agree well with AERONET measurements especially in terms of seasonal variability, and a good spatial correlation was found between model results and MSG-SEVIRI (Spinning-Enhanced Visible and InfraRed Imager) dust AOT as well as Multi-angle Imaging SpectroRadiometer (MISR) AOT. ECHAM6-HAM2 computes a more realistic geographical distribution and up to 20 % higher annual Saharan dust emissions, using the MSG-based source map. The representation of dust AOT is partly improved in the southern Sahara and Sahel. In addition, the spatial variability is increased towards a better agreement with observations depending on the season. Thus, using the MSG DSA map can help to circumvent the issue of uncertain soil input parameters.An important issue remains the need to improve the model representation of moist convection and stable nighttime conditions. Compared to sub-daily DSA information from MSG-SEVIRI and results from a regional model, ECHAM6-HAM2 notably underestimates the important fraction of morning dust events by the breakdown of the nocturnal low-level jet, while a major contribution is from afternoon-to-evening emissions.


2020 ◽  
Vol 24 (11) ◽  
pp. 5203-5230
Author(s):  
Natasha MacBean ◽  
Russell L. Scott ◽  
Joel A. Biederman ◽  
Catherine Ottlé ◽  
Nicolas Vuichard ◽  
...  

Abstract. Plant activity in semi-arid ecosystems is largely controlled by pulses of precipitation, making them particularly vulnerable to increased aridity that is expected with climate change. Simple bucket-model hydrology schemes in land surface models (LSMs) have had limited ability in accurately capturing semi-arid water stores and fluxes. Recent, more complex, LSM hydrology models have not been widely evaluated against semi-arid ecosystem in situ data. We hypothesize that the failure of older LSM versions to represent evapotranspiration, ET, in arid lands is because simple bucket models do not capture realistic fluctuations in upper-layer soil moisture. We therefore predict that including a discretized soil hydrology scheme based on a mechanistic description of moisture diffusion will result in an improvement in model ET when compared to data because the temporal variability of upper-layer soil moisture content better corresponds to that of precipitation inputs. To test this prediction, we compared ORCHIDEE LSM simulations from (1) a simple conceptual 2-layer bucket scheme with fixed hydraulic parameters and (2) an 11-layer discretized mechanistic scheme of moisture diffusion in unsaturated soil based on Richards equations, against daily and monthly soil moisture and ET observations, together with data-derived estimates of transpiration / evapotranspiration, T∕ET, ratios, from six semi-arid grass, shrub, and forest sites in the south-western USA. The 11-layer scheme also has modified calculations of surface runoff, water limitation, and resistance to bare soil evaporation, E, to be compatible with the more complex hydrology configuration. To diagnose remaining discrepancies in the 11-layer model, we tested two further configurations: (i) the addition of a term that captures bare soil evaporation resistance to dry soil; and (ii) reduced bare soil fractional vegetation cover. We found that the more mechanistic 11-layer model results in a better representation of the daily and monthly ET observations. We show that, as predicted, this is because of improved simulation of soil moisture in the upper layers of soil (top ∼ 10 cm). Some discrepancies between observed and modelled soil moisture and ET may allow us to prioritize future model development and the collection of additional data. Biases in winter and spring soil moisture at the forest sites could be explained by inaccurate soil moisture data during periods of soil freezing and/or underestimated snow forcing data. Although ET is generally well captured by the 11-layer model, modelled T∕ET ratios were generally lower than estimated values across all sites, particularly during the monsoon season. Adding a soil resistance term generally decreased simulated bare soil evaporation, E, and increased soil moisture content, thus increasing transpiration, T, and reducing the negative bias between modelled and estimated monsoon T∕ET ratios. This negative bias could also be accounted for at the low-elevation sites by decreasing the model bare soil fraction, thus increasing the amount of transpiring leaf area. However, adding the bare soil resistance term and decreasing the bare soil fraction both degraded the model fit to ET observations. Furthermore, remaining discrepancies in the timing of the transition from minimum T∕ET ratios during the hot, dry May–June period to high values at the start of the monsoon in July–August may also point towards incorrect modelling of leaf phenology and vegetation growth in response to monsoon rains. We conclude that a discretized soil hydrology scheme and associated developments improve estimates of ET by allowing the modelled upper-layer soil moisture to more closely match the pulse precipitation dynamics of these semi-arid ecosystems; however, the partitioning of T from E is not solved by this modification alone.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 526
Author(s):  
Sang-Boom Ryoo ◽  
Yun-Kyu Lim ◽  
Young-San Park

The springtime dust events in Northeast Asia pose many economic, social, and health-related risks. Statistical models in the forecasting of seasonal dust events do not fully account for environmental variations in dust sources due to climate change. The Korea Meteorological Administration (KMA) recently developed the GloSea5-ADAM, a numerically based seasonal dust forecasting model, by incorporating the Asian Dust and Aerosol Model (ADAM)’s emission algorithm into Global Seasonal Forecasting Model version 5 (GloSea5). The performance of GloSea5 and GloSea5-ADAM in forecasting seasonal Asian dust events in source (China) and leeward (South Korea) regions was compared. The GloSea5-ADAM solved the limitations of GloSea5, which were mainly attributable to GloSea5′s low bare-soil fraction, and successfully simulated 2017 springtime dust emissions over Northeast Asia. The results show that GloSea5-ADAM’s 2017 and 2018 forecasts were consistent with surface PM10 mass concentrations observed in China and South Korea, while there was a large gap in 2019. This study shows that the geographical distribution and physical properties of soil in dust source regions are important. The GloSea5-ADAM model is only a temporary solution and is limited in its applicability to Northeast Asia; therefore, a globally applicable dust emission algorithm that considers a wide variety of soil properties must be developed.


2019 ◽  
Author(s):  
Natasha MacBean ◽  
Russell L. Scott ◽  
Joel A. Biederman ◽  
Catherine Ottlé ◽  
Nicolas Vuichard ◽  
...  

Abstract. Plant activity in semi-arid ecosystems is largely controlled by pulses of precipitation, making them particularly vulnerable to increased aridity expected with climate change. Simple bucket-model hydrology schemes in land surface models (LSMs) have had limited ability in accurately capturing semi-arid water stores and fluxes. Recent, more complex, LSM hydrology models have not been widely evaluated against semi-arid ecosystem in situ data. We hypothesize that the failure of older LSM versions to represent evapotranspiration, ET, in arid lands is because simple bucket models do not capture realistic fluctuations in upper layer soil moisture. We therefore predict that including a discretized soil hydrology scheme based on a mechanistic description of moisture diffusion will result in an improvement in model ET when compared to data because the temporal variability of upper layer soil moisture content better corresponds to that of precipitation inputs. To test this prediction, we compared ORCHIDEE LSM simulations from (1) a simple conceptual 2-layer bucket scheme with fixed hydrological parameters; and (2) a 11-layer discretized mechanistic scheme of moisture diffusion in unsaturated soil based on Richards equations against daily and monthly soil moisture and ET observations, together with data-derived transpiration / evaporation, T / ET, ratios, from six semi-arid grass, shrub and forest sites in the southwestern USA. The 11-layer scheme also has modified calculations of surface runoff, bare soil evaporation, and water limitation to be compatible with the more complex hydrology configuration. To diagnose remaining discrepancies in the 11-layer model, we tested two further configurations: (i) the addition of a term that captures bare soil evaporation resistance to dry soil; and (ii) reduced bare soil fraction. We found that the more mechanistic 11-layer model results better representation of the daily and monthly ET observations. We show that is likely because of improved simulation of soil moisture in the upper layers of soil (top 5 cm). Some discrepancies between observed and modelled soil moisture and ET may allow us to prioritize future model development. Adding a soil resistance term generally decreased simulated E and increased soil moisture content, thus increasing T and T / ET ratios and reducing the negative T / ET model-data bias. By reducing the bare soil fraction in the model, we illustrated that modelled leaf T is too low at sparsely vegetated sites. We conclude that a discretized soil hydrology scheme and associated developments improves estimates of ET by allowing the model to more closely match the pulse precipitation dynamics of these semi-arid ecosystems; however, the partitioning of T from bare soil evaporation is not solved by this modification alone.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Luis Garcia-Carreras ◽  
John H. Marsham ◽  
Rachel A. Stratton ◽  
Simon Tucker

AbstractThe summertime Sahara and Sahel are the world’s largest source of airborne mineral dust. Cold-pool outflows from moist convection (‘haboobs’) are a dominant source of summertime uplift but are essentially missing in global models, raising major questions on the reliability of climate projections of dust and dust impacts. Here we use convection-permitting simulations of pan-African climate change, which explicitly capture haboobs, to investigate whether this key limitation of global models affects projections. We show that explicit convection is key to capturing the observed summertime maximum of dust-generating winds, which is missed with parameterised convection. Despite this, future climate changes in dust-generating winds are more sensitive to the effects of explicit convection on the wider meteorology than they are to the haboobs themselves, with model differences in the change in dust-generating winds reaching 60% of current values. The results therefore show the importance of improving convection in climate models for dust projections.


2015 ◽  
Vol 8 (9) ◽  
pp. 7879-7910 ◽  
Author(s):  
B. Heinold ◽  
I. Tegen ◽  
K. Schepanski ◽  
J. R. Banks

Abstract. In the aerosol-climate model ECHAM6-HAM2, dust source activation (DSA) observations from Meteosat Second Generation (MSG) satellite are proposed to replace the original source area parameterization over the Sahara Desert. The new setup is tested in nudged simulations for the period 2007 to 2008. The evaluation is based on comparisons to dust emission events inferred from MSG dust index imagery, AERONET sun photometer observations, and satellite retrievals of aerosol optical thickness (AOT). The model results agree well with AERONET measurements. Good correlations between model results and MSG-SEVIRI dust AOT as well as Multi-angle Imaging Spectro-Radiometer (MISR) AOT indicate that also the spatial dust distribution is well reproduced. ECHAM6-HAM2 computes a more realistic geographical distribution and up to 20 % higher annual Saharan dust emissions, using the MSG-based source map. The representation of dust AOT is partly improved in the southern Sahara and Sahel. In addition, the spatial variability is increased towards a better agreement with observations depending on the season. Thus, using the MSG DSA map can help to circumvent the issue of uncertain soil input parameters. An important issue remains the need to improve the model representation of moist convection and stable nighttime conditions. Compared to sub-daily DSA information from MSG-SEVIRI and results from a regional model, ECHAM6-HAM2 notably underestimates the important fraction of morning dust events by the breakdown of the nocturnal low-level jet, while a major contribution is from afternoon-to-evening emissions.


2012 ◽  
Vol 16 (7) ◽  
pp. 1817-1831 ◽  
Author(s):  
F. Alkhaier ◽  
G. N. Flerchinger ◽  
Z. Su

Abstract. Understanding when and how groundwater affects surface temperature and energy fluxes is significant for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To investigate the shallow groundwater effect under bare soil conditions, we numerically exposed two soil profiles to identical metrological forcing. One of the profiles had shallow groundwater. The different responses that the two profiles manifested were inspected regarding soil moisture, temperature and energy balance at the land surface. The findings showed that the two profiles differed in three aspects: the absorbed and emitted amounts of energy, the portioning out of the available energy and the heat fluency in the soil. We concluded that due to their lower albedo, shallow groundwater areas reflect less shortwave radiation and consequently get a higher magnitude of net radiation. When potential evaporation demand is sufficiently high, a large portion of the energy received by these areas is consumed for evaporation. This increases the latent heat flux and reduces the energy that could have heated the soil. Consequently, lower magnitudes of both sensible and ground heat fluxes are caused to occur. The higher soil thermal conductivity in shallow groundwater areas facilitates heat transfer between the top soil and the subsurface, i.e. soil subsurface is more thermally connected to the atmosphere. For the reliability of remote sensors in detecting shallow groundwater effect, it was concluded that this effect can be sufficiently clear to be detected if at least one of the following conditions occurs: high potential evaporation and high contrast between day and night temperatures. Under these conditions, most day and night hours are suitable for shallow groundwater depth detection.


Sign in / Sign up

Export Citation Format

Share Document