scholarly journals Convective, intrusive geothermal plays: what about tectonics?

2015 ◽  
Vol 3 (1) ◽  
pp. 51-59 ◽  
Author(s):  
A. Santilano ◽  
A. Manzella ◽  
G. Gianelli ◽  
A. Donato ◽  
G. Gola ◽  
...  

<p><strong>Abstract.</strong> We revised the concept of convective, intrusive geothermal plays, considering that the tectonic setting is not, in our opinion, a discriminant parameter suitable for a classification. We analysed and compared four case studies: (i) Larderello (Italy), (ii) Mt Amiata (Italy), (iii) The Geysers (USA) and (iv) Kizildere (Turkey). The tectonic settings of these geothermal systems are different and a matter of debate, so it is hard to use this parameter, and the results of classification are ambiguous. We suggest a classification based on the age and nature of the heat source and the related hydrothermal circulation. Finally we propose to distinguish the convective geothermal plays as volcanic, young intrusive and amagmatic.</p>

2016 ◽  
Vol 67 (2) ◽  
pp. 197-323 ◽  
Author(s):  
M. Abdelaly Rivera-Gómez ◽  
Surendra P. Verma

AbstractWe evaluated 55 multidimensional diagrams proposed during 2004-2013 for the tectonic discrimination of ultrabasic, basic, intermediate, and acid magmas. The Miocene to Recent rock samples for testing the diagrams had not been used for constructing them. Eighteen test studies (2 from ocean island; 2 from ocean island/continental rift; 6 from continental rift; 4 from continental arc; 2 from island arc; 1 from mid-ocean ridge, and 1 from collision) of relatively fresh rocks fully confirmed the satisfactory functioning of these diagrams for all tectonic fields for which they were proposed. Eight additional case studies on hydrothermally altered or moderately to highly weathered rocks were also presented to achieve further understanding of the functioning of these diagrams. For these rocks as well, the diagrams indicated the expected tectonic setting. We also show that for testing or using these diagrams the freely-available geochemistry databases should be used with caution but certainly after ascertaining the correct magma types to select the appropriate diagram sets. The results encourage us to recommend these diagrams for deciphering the tectonic setting of older terranes or areas with complex or transitional tectonic settings.


2020 ◽  
Vol 54 ◽  
pp. 129-136
Author(s):  
Camilla Rossi ◽  
Francesco Grigoli ◽  
Simone Cesca ◽  
Sebastian Heimann ◽  
Paolo Gasperini ◽  
...  

Abstract. Geothermal systems in the Hengill volcanic area, SW Iceland, started to be exploited for electrical power and heat production since the late 1960s. Today the two largest operating geothermal power plants are located at Nesjavellir and Hellisheiði. This area is a complex tectonic and geothermal site, located at the triple junction between the Reykjanes Peninsula (RP), the Western Volcanic Zone (WVZ), and the South Iceland Seismic Zone (SISZ). The region is seismically highly active with several thousand earthquakes located yearly. The origin of such earthquakes may be either natural or anthropogenic. The analysis of microseismicity can provide useful information on natural active processes in tectonic, geothermal and volcanic environments as well as on physical mechanisms governing induced events. Here, we investigate the microseismicity occurring in Hengill area, using a very dense broadband seismic monitoring network deployed in Hellisheiði since November 2018, and apply sophisticated full-waveform based method for detection and location. Improved locations and first characterization indicate that it is possible to identify different types of microseismic clusters, which are associated with either production/injection or the tectonic setting of the geothermal area.


Author(s):  
Alexandre de Oliveira Chaves ◽  
Raphael Martins Coelho

Resumo: Granitoides podem se formar não apenas nos vários ambientes dos diferentes estágios do ciclo de Wilson, como também acima de plumas mantélicas, como resultado da fusão crustal decorrente do calor fornecido pelas plumas. Com base na geoquímica e geocronologia disponível na literatura, este artigo leva em conta essa última possibilidade na reinterpretação do ambiente tectônico de formação do leucogranito de Gouveia (Minas Gerais), que havia sido previamente interpretado como granitoide de ambiente tectônico colisional.Palavras Chave: Granito tipo-A, Gouveia, fusão crustalAbstract:TECTONIC SETTING OF THE GOUVEIA LEUCOGRANITE (MINAS GERAIS) REINTERPRETED. Granitoids can be originated not only in the diverse tectonic settings of the Wilson Cycle, but also above mantle plumes, as a result of the crustal melting promoted by heat transfer from plumes. Based on geochemistry and geochronology available in literature, this paper takes this possibility into account on the reinterpretation of the Gouveia leucogranite tectonic setting, previously interpreted as collisional.Keywords: A-type granite, Gouveia, crustal melting


2019 ◽  
Vol 7 (2) ◽  
pp. T525-T545
Author(s):  
Yaxiong Sun ◽  
Wenlong Ding ◽  
Yang Gu ◽  
Gang Zhao ◽  
Siyu Shi ◽  
...  

Redbeds with a large thickness in the lower Cretaceous record abundant geologic information in the Minle Basin. We have conducted the paleoweathering conditions, provenance, and tectonic settings based on mineralogy and geochemistry. Our results indicate that mudstone samples are characterized by abundant illite with negligible amounts of K-feldspars and analcime. The lower part of the lower Cretaceous is rich in quartz, whereas the upper part is dominated by dolomite and analcime. We suggest that this is caused by the decreasing input of the clastic influx during the middle-late early Cretaceous. High index of compositional variation values (average 1.33) indicate first-cycle sediment supply, suggesting an overall compositional immaturity and short-distance transportation. These characteristics are consistent with an active regional extension tectonic setting. The [Formula: see text] system ([Formula: see text];[Formula: see text];[Formula: see text]) and Th/U versus Th consistently reveal that the lower Cretaceous experienced a positive gradient in chemical weathering from young to old formations. Although the patterns of trace elements in three formations of the lower Cretaceous are different, those of the rare earth elements (REEs) tend to be consistent. The significant enrichment of light REEs, heavy REEs fractionation, and distinctive negative Eu anomalies suggest derivation from an old, upper continental crust composed of predominantly felsic sediments. This interpretation is supported by several discrimination diagrams such as titanium dioxide-nickel ([Formula: see text]), which shows the characteristics of immature recycled sediments. A few sensitive elements, ratios, and normalized REE patterns indicate a provenance of an active continental margin and a continental island arc (CIA). The La-Th-Sc, Th-Co-Zr/10, and Th-Sc-Zr/10 discrimination plots further confirm the CIA signature. Thus, we conclude that the early Cretaceous redbeds in the Minle Basin, Hexi Corridor, were deposited in a dustpan-shaped half-graben basin in a CIA setting when northwest China was influenced by intense regional extension.


1993 ◽  
Vol 57 (389) ◽  
pp. 575-589 ◽  
Author(s):  
Pavel K. Kepezhinskas ◽  
Rex N. Taylor ◽  
Hisao Tanaka

AbstractUltramafic to marie plutons in the Olyutor Range, North Kamchatka, represent the magmatic roots of a late Eocene arc, related to the westward subduction of the Komandorsky Basin beneath the Asian continental margin. Olyutor Range plutons are concentrically zoned with cumulate dunite cores mantled by a wehrlite-pyroxenite transitional zone and, in turn, by a narrow gabbroic rim.Spinel is a common accessory mineral in these arc plutonics, and we present analyses of spinels from a range of lithologies. A continuous compositional trend is observed from Cr-spinel in the ultramafics to Cr-rich magnetite in marginal gabbros. Complex chemical zoning patterns within individual spinel grains suggest an interplay between fO2, fractionation, volatile content and subsequent sub-solidus reequilibration of spinel with co-existing silicates (mainly olivine).In general, the spinels from magmatic arc environments are characterised by high total Fe and high Fe3+ contents compared to MORB and boninitic spinels and higher Cr-values relative to oceanic basin spinels. These differences imply a high oxygen fugacity during arc petrogenesis. Differences are also observed between plutonic spinels from arcs and low-Ti supra-subduction zone ophiolites. Low-Ti ophiolitic spinels are generally poorer in iron and richer in Cr, and hence are similar in composition and perhaps tectonic setting to fore-arc boninitic spinels.


2013 ◽  
Vol 23 (2) ◽  
pp. 247-265 ◽  
Author(s):  
V. Pathak ◽  
T. Babadagli ◽  
J. A. Majorowicz ◽  
M. J. Unsworth

2018 ◽  
pp. 021-080 ◽  
Author(s):  
Sandra M. Barr ◽  
Deanne Van Rooyen ◽  
Chris E. White

Granitoid plutons are a major component of pre-Carboniferous rocks in Cape Breton Island and knowledge of the time and tectonic setting of their emplacement is crucial for understanding the geological history of the island, guiding exploration for granite-related economic mineralization, and making along-orogen correlations. The distribution of these plutons and their petrological characteristics have been used in the past for recognizing both Laurentian and peri-Gondwanan components in Cape Breton Island, and for subdividing the peri-Gondwanan components into Ganderian and Avalonian terranes. However, ages of many plutons were assumed on the basis of field relations and petrological features compared to those of the relatively few reliably dated plutons. Seventeen new U–Pb (zircon) ages from igneous units reported here provide enhanced understanding of the distribution of pluton ages. Arc-related plutons in the Aspy terrane with ages of ca. 490 to 475 Ma likely record the Penobscottian tectonomagmatic event recognized in the Exploits subzone of central Newfoundland and New Brunswick but not previously recognized in Cape Breton Island. Arc-related Devonian plutonic activity in the same terrane is more widespread, continuous, and protracted (445 Ma to 395 Ma) than previously known. Late Devonian magmatism in the Ganderian Aspy terrane is similar in age to that in the Avalonian Mira terrane (380 to 360 Ma) but the tectonic settings are different. In contrast, magmatic activity in the Bras d’Or terrane is almost exclusively arc-related in the Late Ediacaran (580 to 540 Ma) and rift-related in the Late Cambrian (520 to 490 Ma). The new data support the terrane distinctions previously documented.


2021 ◽  
Vol 1 ◽  
pp. 67-68
Author(s):  
Uwe Kroner ◽  
Peter Hallas ◽  
Franz Müller

Abstract. For permanent nuclear waste disposal sites, crystalline rocks, especially granitic/granodioritic batholiths, are considered an appropriate host rock. Principally, three types of granitic plutons occur in the extra-alpine crystalline basement of Germany that were consolidated during the late Paleozoic Variscan orogeny of Central Europe: (i) Pre-Variscan voluminous granodiorites that are hardly affected by the subsequent continent–continent collision; (ii) voluminous granites in various tectonic settings intruded during the late orogenic stage of the Variscides; (iii) post-orogenic granites related to vast Permian intracontinental extension. Thus, in terms of the syn-intrusive tectonic setting and post-intrusive processes there are significant differences. Although it can be expected that different tectonic environments caused significant differences in the material properties, for Germany, however, there is no systematic study regarding the fabric of such plutonites. In order to find the most suitable “granite” we investigate the primary anisotropy of granites evolved during the emplacement and crystallization of the melt. For this we sample rocks of all three principal types and various syn-intrusive tectonic settings, i.e., compression, extension, strike-slip, transtension, and transpression. By means of combined measurements of the “Anisotropy of the Magnetic Susceptibility” and the “Shape Preferred Orientation” we characterize the syn-intrusive flow pattern, i.e., the magmatic foliation and lineation. The Crystallographic Preferred Orientation is analyzed by a combination of neutron time-of-flight experiments and electron backscatter diffraction measurements at the Frank Laboratory of Neutron Physics at JINR, Dubna, Russia, and the TU Bergakademie Freiberg respectively. Furthermore, special attention is given to the systematic mapping of annealed microcracks evolved during late magmatic fluid escape and/or post-crystallization hydrothermal activity. In a second step we compare the primary anisotropy with the post-magmatic fracture pattern of the particular granites. Those fractures constitute probable fluid pathways and, thus, the first-order risk for a potential permanent nuclear waste disposal. All datasets are organized in a Geological Information System allowing for a complete traceability of the different investigation steps. The results of this study will serve as a basis for a future detailed exploration.


Author(s):  
Muhammad Nafian ◽  
Belista Gunawan ◽  
Nanda Ridki Permana

Indonesia has the greatest potential for geothermal energy in the world. Geothermal has an important role as an alternative fuel because it is a renewable energy source, but its use has not been maximized. One of the areas that have the greatest potential for geothermal energy in South Solok, West Sumatra. Therefore, this study was conducted to determine the geothermal system in the South Solok area, West Sumatra by using the gravity method. The gravity data processing stage requires some software to get the CBA value(Complete Bouguer Anomaly), map contours of the CBA. Anomaly separation with the butterworth filter method, determination of residual anomaly slice points, and 2D modeling of geothermal systems. Based on modeling, the qualitative interpretation interprets the Complete Bouguer Anomaly map which is suspected as a geothermal prospect area is a low anomaly ranging from 7.9 mgal - 9.4 mgal which is marked in dark blue. Meanwhile, quantitative interpretation produces modeling of the AB and CD slicing with a total of four layers. This layer consists of clay rock as a cap rock, sandstone as a reservoir, granite as a heated rock as a heat source, and the last layer in the form of magma as a heat source. The anomaly modeling of these two sections is dominated by granite rock with a density value of 2500 kg/m3 for the AB section and 2550 kg/m3 for the CD section.


Geochemistry ◽  
2021 ◽  
Author(s):  
Gaafar A. El Bahariya

Granites constitute the main rock components of the Earth’s continental crust, which suggested to be formed in variable geodynamics environments. The different types of granitic rocks, their compositional characteristics, tectonic settings and magma sources are outlined. Mineralogical classification of granites includes four rock types: tonalites, granodiorites, granite (monzogranite and syenogranites) and alkali-feldspar granites. Alphabetical classification subdivided granites into: I-type, S-type, A-type and M-type granites. Moreover, formation of granitic magmas requires distinctive geodynamic settings such as: volcanic arc granite (Cordilleran); collision-related granites (leucogranites); intra-plate and ocean ridge granites. The Eastern Desert of Egypt (ED) forms the northern part of Nubian Shield. Both older and younger granites are widely exposed in the ED. Old granites (OG) comprise tonalites and granodiorites of syn- to late-orogenic granitoid assemblages. They are calcalkaline, I-type, metaluminous and display island arc tectonic setting. Younger granites (YG) on the other hand, include granites, alkali-feldspar granites and minor granodiorites. They are of I- and A-type granites and of post-orogenic to anorogenic tectonic settings. The majority of the YG are alkaline, A-type granite and of within-plate tectonic setting (WPG). The A-type granites are subdivided into: A2-type postorogenic granites and A1-type anorogenic granites. Granite magma genesis involves: (a) fractional crystallization of mafic mantle-derived magmas; (b) anatexis or assimilation of old, upper crustal rocks (c) re - melting of juvenile mafic mantle – derived rocks underplating the continental crust. Generally, older I-type granitoids were interpreted to result from melting of mafic crust and dated at approximately 760–650 Ma, whereas younger granites suggested to be formed as a result of partial melting of a juvenile Neoproterozoic mantle source. Moreover, they formed from anatectic melts of various crustal sources that emplaced between 600 and 475 Ma.


Sign in / Sign up

Export Citation Format

Share Document