scholarly journals Cloud removal methodology from MODIS snow cover product

2009 ◽  
Vol 13 (7) ◽  
pp. 1361-1373 ◽  
Author(s):  
A. Gafurov ◽  
A. Bárdossy

Abstract. The Moderate Resolution Imaging Spectroradiometer (MODIS) employed by Terra and Aqua satellites provides spatially snow covered data with 500 m and daily temporal resolution. It delivers public domain data in raster format. The main disadvantage of the MODIS sensor is that it is unable to record observations under cloud covered regions. This is why this study focuses on estimating the pixel cover for cloud covered areas where no information is available. Our step to this product involves employing methodology based on six successive steps that estimate the pixel cover using different temporal and spatial information. The study was carried out for the Kokcha River basin located in northeastern part of Afghanistan. Snow coverage in catchments, like Kokcha, is very important where the melt-water from snow dominates the river discharge in vegetation period for irrigation purposes. Since no snow related observations were available from the region, the performance of the proposed methodology was tested using the cloud generated MODIS snow cover data as possible "ground truth" information. The results show successful performances arising from the methods applied, which resulted in all cloud coverage being removed. A validation was carried out for all subsequent steps, to be outlined below, where each step removes progressively more cloud coverage. Steps 2 to 5 (step 1 was not validated) performed very well with an average accuracy of between 90–96%, when applied one after another for the selected valid days in this study. The sixth step was the least accurate at 78%, but it led to the removal of all remaining cloud cover.

2019 ◽  
Vol 20 (7) ◽  
pp. 1293-1306 ◽  
Author(s):  
Yingsha Jiang ◽  
Fei Chen ◽  
Yanhong Gao ◽  
Michael Barlage ◽  
Jianduo Li

Abstract Snow cover in the Qinghai–Tibet Plateau (QTP) is a critical component in the water cycle and regional climate of East Asia. Fractional snow cover (FSC) derived from five satellite sources [the three satellites comprising the multisensor synergy of FengYun-3 (FY-3A/B/C), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Interactive Multisensor Snow and Ice Mapping System (IMS)] were intercompared over the QTP to examine uncertainties in mean snow cover and interannual variability over the last decade. A four-step cloud removal procedure was developed for MODIS and FY-3 data, which effectively reduced the cloud percentage from about 40% to 2%–3% with an error of about 2% estimated by a random sampling method. Compared to in situ snow-depth observations, the cloud-removed FY-3B data have an annual classification accuracy of about 94% for both 0.04° and 0.01° resolutions, which is higher than other datasets and is recommended for use in QTP studies. Among the five datasets analyzed, IMS has the largest snow extent (22% higher than MODIS) and the highest FSC (4.7% higher than MODIS), while the morning-overpass MODIS and FY-3A/C FSC are similar and are around 5% higher than the afternoon-overpass FY-3B FSC. Contrary to MODIS, IMS shows increasing variability in snow cover and snow duration over the last decade (2006–17). Differences in variabilities of FSC and snow duration between products are greater at 5–6 km than lower elevations, with seasonal snow-cover change showing the largest uncertainty in snowmelt date.


2004 ◽  
Vol 39 ◽  
pp. 223-230 ◽  
Author(s):  
Ian C. Brown ◽  
Ted A. Scambos

AbstractWe use satellite images to track seasonal and interannual variations in blue-ice extent over the past 30 years near Byrd Glacier on the East Antarctic plateau. The study areas have low slope and few nearby nunataks, which may increase their climate sensitivity. A threshold-based algorithm sensitive to snow grain-size is used to analyze 56 Moderate Resolution Imaging Spectroradiometer (MODIS) images over three recent summer seasons. Seasonal blue-ice exposure grows rapidly in late spring, and peaks by late December. Exposure is relatively constant between late December and mid-January, then declines in February. We interpret this cycle as due to removal and re-accumulation of patchy snow. Interannual changes in blue-ice area may be estimated by tracking the near-constant summer maximum extent period. Fifteen mid-summer Landsat images, spanning 1974–2002, were analyzed to determine long-term variations. Interannual area changes are 10–30%; however, the MODIS data revealed that the exposed blue-ice area can be sharply reduced for up to 2 weeks after a snowfall event; and in the 2001/02 season, patchy snow cover persisted for the entire summer. The combination of MODIS seasonal and Landsat interannual data indicates that blue-ice areas can be climate-sensitive. The strong feedback between snow cover and surface energy balance implies that blue-ice areas could rapidly decrease due to climate-related increases in snowfall or reduced ablation.


2017 ◽  
Vol 12 (4) ◽  
pp. 793-805 ◽  
Author(s):  
Tong Liu ◽  
Morimasa Tsuda ◽  
Yoichi Iwami ◽  
◽  

This study considered glacier and snow meltwater by using the degree–day method with ground-based air temperature and fractional glacier/snow cover to simulate discharge at Skardu, Partab Bridge (P. Bridge), and Tarbela Dam in the Upper Indus Basin during the monsoon season, from the middle of June to the end of September. The optimum parameter set was determined and validated in 2010 and 2012. The simulated discharge with glaciermelt and snowmelt could capture the variations of the observed discharge in terms of peak volume and timing, particularly in the early monsoon season. The Moderate Resolution Imaging Spectroradiometer (MODIS) daily and eight-day snow cover products were applied and recommended with proper settings for application. This study also investigated the simulations with snow packs instead of daily snow cover, which was found to approach the maximum magnitude of observed discharge even from the uppermost station, Skardu.This study estimated the glacier and snow meltwater contribution at Skardu, Partab Bridge, and Tarbela as 43.2–65.2%, 22.0–29.3%, and 6.3–19.9% of average daily discharge during the monsoon season, respectively. In addition, this study evaluated the main source of simulation discrepancies and concluded that the methodology proposed in the study worked well with proper precipitation.


2015 ◽  
Vol 9 (5) ◽  
pp. 4997-5020 ◽  
Author(s):  
C. L. Huang ◽  
H. W. Wang ◽  
J. L. Hou

Abstract. Accurately measuring the spatial distribution of the snow depth is difficult because stations are sparse, particularly in western China. In this study, we develop a novel scheme that produces a reasonable spatial distribution of the daily snow depth using kriging interpolation methods. These methods combine the effects of elevation with information from Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover area (SCA) products. The scheme uses snow-free pixels in MODIS SCA images with clouds removed to identify virtual stations, or areas with zero snow depth, to compensate for the scarcity and uneven distribution of stations. Four types of kriging methods are tested: ordinary kriging (OK), universal kriging (UK), ordinary co-kriging (OCK), and universal co-kriging (UCK). These methods are applied to daily snow depth observations at 50 meteorological stations in northern Xinjiang Province, China. The results show that the spatial distribution of snow depth can be accurately reconstructed using these kriging methods. The added virtual stations improve the distribution of the snow depth and reduce the smoothing effects of the kriging process. The best performance is achieved by the OK method in cases with shallow snow cover and by the UCK method when snow cover is widespread.


Sign in / Sign up

Export Citation Format

Share Document