scholarly journals Influence of thermodynamic soil and vegetation parameterizations on the simulation of soil temperature states and surface fluxes by the Noah LSM over a Tibetan plateau site

2009 ◽  
Vol 13 (6) ◽  
pp. 759-777 ◽  
Author(s):  
R. van der Velde ◽  
Z. Su ◽  
M. Ek ◽  
M. Rodell ◽  
Y. Ma

Abstract. In this paper, we investigate the ability of the Noah Land Surface Model (LSM) to simulate temperature states in the soil profile and surface fluxes measured during a 7-day dry period at a micrometeorological station on the Tibetan Plateau. Adjustments in soil and vegetation parameterizations required to ameliorate the Noah simulation on these two aspects are presented, which include: (1) differentiating the soil thermal properties of top- and subsoils, (2) investigation of the different numerical soil discretizations and (3) calibration of the parameters utilized to describe the transpiration dynamics of the Plateau vegetation. Through the adjustments in the parameterization of the soil thermal properties (STP) simulation of the soil heat transfer is improved, which results in a reduction of Root Mean Squared Differences (RMSD's) by 14%, 18% and 49% between measured and simulated skin, 5-cm and 25-cm soil temperatures, respectively. Further, decreasing the minimum stomatal resistance (Rc,min) and the optimum temperature for transpiration (Topt) of the vegetation parameterization reduces RMSD's between measured and simulated energy balance components by 30%, 20% and 5% for the sensible, latent and soil heat flux, respectively.

2009 ◽  
Vol 6 (1) ◽  
pp. 455-499 ◽  
Author(s):  
R. van der Velde ◽  
Z. Su ◽  
M. Ek ◽  
M. Rodell ◽  
Y. Ma

Abstract. In this paper, we investigate the ability of the Noah Land Surface model (LSm) to simulate temperature states in the soil profile and surface fluxes measured during a 7-day dry period at a micrometeorological station on the Tibetan Plateau. Adjustments in soil and vegetation parameterizations required to ameliorate the Noah simulation on these two aspects are presented, which include: (1) Differentiating the soil thermal properties of top- and subsoils, (2) Investigation of the different numerical soil discretizations and (3) Calibration of the parameters utilized to describe the transpiration dynamics of the Plateau vegetation. Through the adjustments in the parameterization of the soil thermal properties (STP) simulation of the soil heat transfer is improved, which results in a reduction of Root Mean Squared Differences (RMSD's) by 14%, 18% and 49% between measured and simulated skin, 5-cm and 25-cm soil temperatures, respectively. Further, decreasing the minimum stomatal resistance (Rc, min) and the optimum temperature for transpiration (Topt) of the vegetation parameterization reduces RMSD's between measured and simulated energy balance components by 30%, 20% and 5% for the sensible, latent and soil heat flux, respectively.


2017 ◽  
Vol 30 (5) ◽  
pp. 1807-1819 ◽  
Author(s):  
Chi Zhang ◽  
Qiuhong Tang ◽  
Deliang Chen

Abstract Evidence has suggested a wetting trend over part of the Tibetan Plateau (TP) in recent decades, although there are large uncertainties in this trend due to sparse observations. Examining the change in the moisture source for precipitation over a region in the TP with the most obvious increasing precipitation trend may help understand the precipitation change. This study applied the modified Water Accounting Model with two atmospheric reanalyses, ground-observed precipitation, and evaporation from a land surface model to investigate the change in moisture source of the precipitation over the targeted region. The study estimated that on average more than 69% and more than 21% of the moisture supply to precipitation over the targeted region came from land and ocean, respectively. The moisture transports from the west of the TP by the westerlies and from the southwest by the Indian summer monsoon likely contributed the most to precipitation over the targeted region. The moisture from inside the region may have contributed about 18% of the total precipitation. Most of the increased moisture supply to the precipitation during 1979–2013 was attributed to the enhanced influx from the southwest and the local moisture supply. The precipitation recycling ratio over the targeted region increased significantly, suggesting an intensified hydrological cycle. Further analysis at monthly scale and with wet–dry-year composites indicates that the increased moisture contribution was mainly from the southwest and the targeted region during May and September. The enhanced water vapor transport from the Indian Ocean during July and September and the intensified local hydrological recycling seem to be the primary reasons behind the recent precipitation increase over the targeted region.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1362
Author(s):  
David Stevens ◽  
Pedro M. A. Miranda ◽  
René Orth ◽  
Souhail Boussetta ◽  
Gianpaolo Balsamo ◽  
...  

The surface-atmosphere turbulent exchanges couple the water, energy and carbon budgets in the Earth system. The biosphere plays an important role in the evaporation process, and vegetation related parameters such as the leaf area index (LAI), vertical root distribution and stomatal resistance are poorly constrained due to sparse observations at the spatio-temporal scales at which land surface models (LSMs) operate. In this study, we use the Carbon Hydrology Tiled European Center for Medium-Range Weather Forecasts (ECMWF) Scheme for Surface Exchanges over Land (CHTESSEL) model and investigate the sensitivity of the simulated turbulent fluxes to these vegetation related parameters. Observed data from 17 FLUXNET towers were used to force and evaluate model simulations with different vegetation parameter configurations. The replacement of the current LAI climatology used by CHTESSEL, by a new high-resolution climatology, representative of the station’s location, has a small impact on the simulated fluxes. Instead, a revision of the root profile considering a uniform root distribution reduces the underestimation of evaporation during water stress conditions. Despite the limitations of using only one model and a limited number of stations, our results highlight the relevance of root distribution in controlling soil moisture stress, which is likely to be applicable to other LSMs.


2021 ◽  
Author(s):  
Gianpaolo Balsamo ◽  
Souhail Boussetta

<p>The ECMWF operational land surface model, based on the Carbon-Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (CHTESSEL) is the baseline for global weather, climate and environmental applications at ECMWF. In order to expedite its progress and benefit from international collaboration, an ECLand platform has been designed to host advanced and modular schemes. ECLand is paving the way toward a land model that could support a wider range of modelling applications, facilitating global kilometer scales testing as envisaged in the Copernicus and Destination Earth programmes. This presentation introduces the CHTESSEL and its recent new developments that aims at hosting new research applications.</p><p>These new improvements touch upon different components of the model: (i) vegetation, (ii) snow, (iii) soil hydrology, (iv) open water/lakes (v) rivers and (vi) urban areas. The developments are evaluated separately with either offline simulations or coupled experiments, depending on their level of operational readiness, illustrating the benchmarking criteria for assessing process fidelity with regards to land surface fluxes and reservoirs involved in water-energy-carbon exchange, and within the Earth system prediction framework, as foreseen to enter upcoming ECMWF operational cycles.</p><p>Reference: Souhail Boussetta, Gianpaolo Balsamo*, Anna Agustì-Panareda, Gabriele Arduini, Anton Beljaars, Emanuel Dutra, Glenn Carver, Margarita Choulga, Ioan Hadade, Cinzia Mazzetti, Joaquìn Munõz-Sabater, Joe McNorton, Christel Prudhomme, Patricia De Rosnay, Irina Sandu, Nils Wedi, Dai Yamazaki, Ervin Zsoter, 2021: ECLand: an ECMWF land surface modelling platform, MDPI Atmosphere, (in prep).</p>


2014 ◽  
Vol 18 (5) ◽  
pp. 1761-1783 ◽  
Author(s):  
O. Branch ◽  
K. Warrach-Sagi ◽  
V. Wulfmeyer ◽  
S. Cohen

Abstract. A 10 × 10 km irrigated biomass plantation was simulated in an arid region of Israel to simulate diurnal energy balances during the summer of 2012 (JJA). The goal is to examine daytime horizontal flux gradients between plantation and desert. Simulations were carried out within the coupled WRF-NOAH atmosphere/land surface model. MODIS land surface data was adjusted by prescribing tailored land surface and soil/plant parameters, and by adding a controllable sub-surface irrigation scheme to NOAH. Two model cases studies were compared – Impact and Control. Impact simulates the irrigated plantation. Control simulates the existing land surface, where the predominant land surface is bare desert soil. Central to the study is parameter validation against land surface observations from a desert site and from a 400 ha Simmondsia chinensis (jojoba) plantation. Control was validated with desert observations, and Impact with Jojoba observations. Model evapotranspiration was validated with two Penman–Monteith estimates based on the observations. Control simulates daytime desert conditions with a maximum deviation for surface 2 m air temperatures (T2) of 0.2 °C, vapour pressure deficit (VPD) of 0.25 hPa, wind speed (U) of 0.5 m s−1, surface radiation (Rn) of 25 W m−2, soil heat flux (G) of 30 W m−2 and 5 cm soil temperatures (ST5) of 1.5 °C. Impact simulates irrigated vegetation conditions with a maximum deviation for T2 of 1–1.5 °C, VPD of 0.5 hPa, U of 0.5 m s−1, Rn of 50 W m−5, G of 40 W m−2 and ST5 of 2 °C. Latent heat curves in Impact correspond closely with Penman–Monteith estimates, and magnitudes of 160 W m−2 over the plantation are usual. Sensible heat fluxes, are around 450 W m−2 and are at least 100–110 W m−2 higher than the surrounding desert. This surplus is driven by reduced albedo and high surface resistance, and demonstrates that high evaporation rates may not occur over Jojoba if irrigation is optimized. Furthermore, increased daytime T2 over plantations highlight the need for hourly as well as daily mean statistics. Daily mean statistics alone may imply an overall cooling effect due to surplus nocturnal cooling, when in fact a daytime warming effect is observed.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 465
Author(s):  
Bernard Cappelaere ◽  
Denis Feurer ◽  
Théo Vischel ◽  
Catherine Ottlé ◽  
Hassane Bil-Assanou Issoufou ◽  
...  

In distributed land surface modeling (LSM) studies, uncertainty in the rainfields that are used to force models is a major source of error in predicted land surface response variables. This is particularly true for applications in the African Sahel region, where weak knowledge of highly time/space-variable convective rainfall in a poorly monitored region is a considerable obstacle to such developments. In this study, we used a field-based stochastic rainfield generator to analyze the propagation of the rainfall uncertainty through a distributed land surface model simulating water and energy fluxes in Sahelian ecosystems. Ensemble time/space rainfields were generated from field observations of the local AMMA-CATCH-Niger recording raingauge network. The rainfields were then used to force the SEtHyS-Savannah LSM, yielding an ensemble of time/space simulated fluxes. Through informative graphical representations and innovative diagnosis metrics, these outputs were analyzed to separate the different components of flux variability, among which was the uncertainty represented by ensemble-wise variability. Scale dependence was analyzed for each flux type in the water and energy budgets, producing a comprehensive picture of uncertainty propagation for the various flux types, with its relationship to intrinsic space/time flux variability. The study was performed over a 2530 km2 domain over six months, covering an entire monsoon season and the subsequent dry-down, using a kilometer/daily base resolution of analysis. The newly introduced dimensionless uncertainty measure, called the uncertainty coefficient, proved to be more effective in describing uncertainty patterns and relationships than a more classical measure based on variance fractions. Results show a clear scaling relationship in uncertainty coefficients between rainfall and the dependent fluxes, specific to each flux type. These results suggest a higher sensitivity to rainfall uncertainty for hydrological than for agro-ecological or meteorological applications, even though eddy fluxes do receive a substantial part of that source uncertainty.


2020 ◽  
Author(s):  
Ling Yuan ◽  
Yaoming Ma ◽  
Xuelong Chen

<p>Evapotranspiration (ET), composed of evaporation (ETs) and transpiration (ETc) and intercept water (ETw), plays an indispensable role in the water cycle and energy balance of land surface processes. A more accurate estimation of ET variations is essential for natural hazard monitoring and water resource management. For the cold, arid, and semi-arid regions of the Tibetan Plateau (TP), previous studies often overlooked the decisive role of soil properties in ETs rates. In this paper, an improved algorithm for ETs in bare soil and an optimized parameter for ETc over meadow based on MOD16 model are proposed for the TP. The nonlinear relationship between surface evaporation resistance (r<sub>s</sub><sup>s</sup>) and soil surface hydration state in different soil texture is redefined by ground-based measurements over the TP. Wind speed and vegetation height were integrated to estimate aerodynamic resistance by Yang et al. (2008). The validated value of the mean potential stomatal conductance per unit leaf area (C<sub>L</sub>) is 0.0038m s<sup>-1</sup>. And the algorithm was then compared with the original MOD16 algorithm and a soil water index–based Priestley-Taylor algorithm (SWI–PT). After examining the performance of the three models at 5 grass flux tower sites in different soil texture over the TP, East Asia, and America, the validation results showed that the half-hour estimates from the improved-MOD16 were closer to observations than those of the other models under the all-weather in each site. The average correlation coefficient(R<sup>2</sup>) of the improved-MOD16 model was 0.83, compared with 0.75 in the original MOD16 model and 0.78 in SWI-PT model. The average values of the root mean square error (RMSE) are 35.77W m<sup>-2</sup>, 79.46 W m<sup>-2</sup>, and 73.88W m<sup>-2</sup> respectively. The average values of the mean bias (MB) are -4.08W m<sup>-2</sup>, -52.36W m<sup>-2</sup>, and -11.74 W m<sup>-2</sup> overall sites, respectively. The performance of these algorithms are better achieved on daily (R<sup>2</sup>=0.81, RMSE=17.22W m<sup>-2</sup>, MB=-4.12W m<sup>-2</sup>; R<sup>2</sup>=0.64, RMSE=56.55W m<sup>-2</sup>, MB=-48.74W m<sup>-2</sup>; R2=0.78, RMSE=22.3W m<sup>-2</sup>, MB=-9.82W m<sup>-2</sup>) and monthly (R2=0.93, RMSE=23.35W m<sup>-2</sup>, MB=-2.8W m<sup>-2</sup>; R2=0.86, RMSE=69.11W m<sup>-2</sup>, MB=-39.5W m<sup>-2</sup>; R2=0.79, RMSE=62.8W m<sup>-2</sup>, MB=-9.7W m<sup>-2</sup>) scales. Overall, the results showed that the newly developed MOD16 model captured ET more accurately than the other two models. The comparisons between the modified algorithm and two mainstream methods suggested that the modified algorithm could produce high accuracy ET over the meadow sites and has great potential for land surface model improvements and remote sensing ET promotion for the ET region.</p>


Sign in / Sign up

Export Citation Format

Share Document