scholarly journals A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data

2012 ◽  
Vol 16 (10) ◽  
pp. 3607-3620 ◽  
Author(s):  
C. Albergel ◽  
G. Balsamo ◽  
P. de Rosnay ◽  
J. Muñoz-Sabater ◽  
S. Boussetta

Abstract. In situ soil moisture data from 122 stations across the United States are used to evaluate the impact of a new bare ground evaporation formulation at ECMWF. In November 2010, the bare ground evaporation used in ECMWF's operational Integrated Forecasting System (IFS) was enhanced by adopting a lower stress threshold than for the vegetation, allowing a higher evaporation. It results in more realistic soil moisture values when compared to in situ data, particularly over dry areas. Use was made of the operational IFS and offline experiments for the evaluation. The latter are based on a fixed version of the IFS and make it possible to assess the impact of a single modification, while the operational analysis is based on a continuous effort to improve the analysis and modelling systems, resulting in frequent updates (a few times a year). Considering the field sites with a fraction of bare ground greater than 0.2, the root mean square difference (RMSD) of soil moisture is shown to decrease from 0.118 m3 m−3 to 0.087 m3 m−3 when using the new formulation in offline experiments, and from 0.110 m3 m−3 to 0.088 m3 m−3 in operations. It also improves correlations. Additionally, the impact of the new formulation on the terrestrial microwave emission at a global scale is investigated. Realistic and dynamically consistent fields of brightness temperature as a function of the land surface conditions are required for the assimilation of the SMOS data. Brightness temperature simulated from surface fields from two offline experiments with the Community Microwave Emission Modelling (CMEM) platform present monthly mean differences up to 7 K. Offline experiments with the new formulation present drier soil moisture, hence simulated brightness temperature with its surface fields are larger. They are also closer to SMOS remotely sensed brightness temperature.

2012 ◽  
Vol 9 (5) ◽  
pp. 6715-6752 ◽  
Author(s):  
C. Albergel ◽  
G. Balsamo ◽  
P. de Rosnay ◽  
J. Muñoz-Sabater ◽  
S. Boussetta

Abstract. In situ soil moisture data from 122 stations across the United States are used to evaluate the impact of a new bare ground evaporation formulation at ECMWF. In November 2010 the bare ground evaporation used in ECMWF's operational Integrated Forecasting System (IFS) was enhanced by adopting a lower stress threshold than for the vegetation, allowing a higher evaporation. It results in more realistic soil moisture values when compared to in situ data, particularly over dry areas. Use was made of the operational IFS and offline experiments for the evaluation. The latter are based on a fixed version of the IFS and make it possible to assess the impact of a single modification while the operational analysis is based on a continuous effort to improve the analysis and modelling systems, resulting in frequent updates (few times a year). Considering the field sites with a fraction of bare ground greater than 0.2, the root mean square difference (RMSD) of soil moisture is shown to decrease from 0.118 m3 m−3 to 0.087 m3 m−3 when using the new formulation in offline experiments, and from 0.110 m3 m−3 to 0.088 m3 m−3 in operations. It also improves correlations. Additionally the impact of the new formulation on the terrestrial microwave emission at a global scale is investigated. Realistic and dynamically consistent fields of brightness temperature as a function of the land surface conditions are required for the assimilation of the SMOS data. Brightness temperature simulated from surface fields from two offline experiments with the Community Microwave Emission Modelling (CMEM) platform present monthly mean differences up to 7 K. Offline experiment with the new formulation presents drier soil moisture, hence simulated brightness temperature with its surface fields are larger. They are also closer to SMOS remotely sensed brightness temperature.


2021 ◽  
Vol 13 (20) ◽  
pp. 4104
Author(s):  
Kim Oanh Hoang ◽  
Minjiao Lu

Soil moisture is a notably important component in various studies in water sciences, including hydrology, agriculture, and water management. To achieve extensive or global spatial coverage, satellites focusing on soil moisture observation have been launched, and many satellite products, such as SMAP and SMOS soil moisture products, have been provided. Most of these satellite observations are based on the dielectric properties of wet soil, and most soil moisture retrieval algorithms are calibrated or evaluated using in situ soil moisture. While the in situ data observed by dielectric sensors, which are the most widely used, are reported to include errors caused by the so-called “temperature effects” of these sensors, the temperature dependency of bulk soil dielectric constant has rarely been discussed on satellite data. Since both in situ dielectric measurements and satellite observations are based on the same physical variable, the dielectric constant and the dielectrically measured in situ soil moisture data are also used as ground truth, it is necessary to assess the impact of temperature effects on satellite products. In this work, we attempted to identify the existence of the temperature effects and evaluate the consequences of removing these effects on in situ and satellite soil moisture and the relationships between the brightness temperature at the soil surface and the brightness temperature provided by satellite observation. To achieve the goals of this study, we analyzed the temperature effects on surface soil moisture data provided by a SMAP mission in Oklahoma, the United States. The results show that temperature effects exist in SMAP soil moisture products in Oklahoma, and the removal of these effects will potentially improve the accuracy of these products.


Author(s):  
Nemesio Rodriguez-Fernandez ◽  
Patricia de Rosnay ◽  
Clement Albergel ◽  
Philippe Richaume ◽  
Filipe Aires ◽  
...  

The assimilation of Soil Moisture and Ocean Salinity (SMOS) data into the ECMWF (European Centre for Medium Range Weather Forecasts) H-TESSEL (Hydrology revised - Tiled ECMWF Scheme for Surface Exchanges over Land) model is presented. SMOS soil moisture (SM) estimates have been produced specifically by training a neural network with SMOS brightness temperatures as input and H-TESSEL model SM simulations as reference. This can help the assimilation of SMOS information in several ways: (1) the neural network soil moisture (NNSM) data have a similar climatology to the model, (2) no global bias is present with respect to the model even if regional differences can exist. Experiments performing joint data assimilation (DA) of NNSM, 2 metre air temperature and relative humidity or NNSM-only DA are discussed. The resulting SM was evaluated against a large number of in situ measurements of SM obtaining similar results to those of the model with no assimilation, even if significant differences were found from site to site. In addition, atmospheric forecasts initialized with H-TESSEL runs (without DA) or with the analysed SM were compared to measure of the impact of the satellite information. Although, NNSM DA has an overall neutral impact in the forecast in the Tropics, a significant positive impact was found in other areas and periods, especially in regions with limited in situ information. The joint NNSM, T2m and RH2m DA improves the forecast for all the seasons in the Southern Hemisphere. The impact is mostly due to T2m and RH2m, but SMOS NN DA alone also improves the forecast in July- September. In the Northern Hemisphere, the joint NNSM, T2m and RH2m DA improves the forecast in April-September, while NNSM alone has a significant positive effect in July-September. Furthermore, forecasting skill maps show that SMOS NNSM improves the forecast in North America and in Northern Asia for up to 72 hours lead time.


2020 ◽  
Author(s):  
Leqiang Sun ◽  
Stéphane Belair ◽  
Marco Carrera ◽  
Bernard Bilodeau

<p>Canadian Space Agency (CSA) has recently started receiving and processing the images from the recently launched C-band RADARSAT Constellation Mission (RCM). The backscatter and soil moisture retrievals products from the previously launched RADARSAT-2 agree well with both in-situ measurements and surface soil moisture modeled with land surface model Soil, Vegetation, and Snow (SVS). RCM will provide those products at an even better spatial coverage and temporal resolution. In preparation of the potential operational application of RCM products in Canadian Meteorological Center (CMC), this paper presents the scenarios of assimilating either soil moisture retrieval or outright backscatter signal in a 100-meter resolution version of the Canadian Land Data Assimilation System (CaLDAS) on field scale with time interval of three hours. The soil moisture retrieval map was synthesized by extrapolating the regression relationship between in-situ measurements and open loop model output based on soil texture lookup table. Based on this, the backscatter map was then generated with the surface roughness retrieved from RADARSAT-2 images using a modified Integral Equation Model (IEM) model. Bias correction was applied to the Ensemble Kalman filter (EnKF) to mitigate the impact of nonlinear errors introduced by multi-sourced perturbations. Initial results show that the assimilation of backscatter is as effective as assimilating soil moisture retrievals. Compared to open loop, both can improve the analysis of surface moisture, particularly in terms of reducing bias.  </p>


Author(s):  
Rolf H. Reichle ◽  
Qing Liu ◽  
Joseph V. Ardizzone ◽  
Wade T. Crow ◽  
Gabrielle J. M. De Lannoy ◽  
...  

AbstractSoil Moisture Active Passive (SMAP) mission L-band brightness temperature (Tb) observations are routinely assimilated into the Catchment land surface model to generate Level-4 Soil Moisture (L4_SM) estimates of global surface and root-zone soil moisture at 9-km, 3-hourly resolution with ~2.5-day latency. The Catchment model in the L4_SM algorithm is driven with ¼-degree, hourly surface meteorological forcing data from the Goddard Earth Observing System (GEOS). Outside of Africa and the high latitudes, GEOS precipitation is corrected using Climate Prediction Center Unified (CPCU) gauge-based, ½-degree, daily precipitation. L4_SM soil moisture was previously shown to improve over land model-only estimates that use CPCU precipitation but no Tb assimilation (CPCU_SIM). Here, we additionally examine the skill of model-only (CTRL) and Tb assimilation-only (SMAP_DA) estimates derived without CPCU precipitation. Soil moisture is assessed versus in situ measurements in well-instrumented regions and globally through the Instrumental Variable (IV) method using independent soil moisture retrievals from the Advanced Scatterometer. At the in situ locations, SMAP_DA and CPCU_SIM have comparable soil moisture skill improvements relative to CTRL for the unbiased root-mean-square error (surface and root-zone) and correlation metrics (root-zone only). In the global average, SMAP Tb assimilation increases the surface soil moisture anomaly correlation by 0.10-0.11 compared to an increase of 0.02-0.03 from the CPCU-based precipitation corrections. The contrast is particularly strong in central Australia, where CPCU is known to have errors and observation-minus-forecast Tb residuals are larger when CPCU precipitation is used. Validation versus streamflow measurements in the contiguous U.S. reveals that CPCU precipitation provides most of the skill gained in L4_SM runoff estimates over CTRL.


Author(s):  
Clément Albergel ◽  
Simon Munier ◽  
Aymeric Bocher ◽  
Bertrand Bonan ◽  
Yongjun Zheng ◽  
...  

LDAS-Monde, an offline land data assimilation system with global capacity, is applied over the CONtiguous US (CONUS) domain to enhance monitoring accuracy for water and energy states and fluxes. LDAS-Monde ingests satellite-derived Surface Soil Moisture (SSM) and Leaf Area Index (LAI) estimates to constrain the Interactions between Soil, Biosphere, and Atmosphere (ISBA) Land Surface Model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (CTRIP) continental hydrological system (ISBA-CTRIP). LDAS-Monde is forced by the ERA-5 atmospheric reanalysis from the European Center For Medium Range Weather Forecast (ECMWF) from 2010 to 2016 leading to a 7-yr, quarter degree spatial resolution offline reanalysis of Land Surface Variables (LSVs) over CONUS. The impact of assimilating LAI and SSM into LDAS-Monde is assessed over North America, by comparison to satellite-driven model estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project, and upscaled ground-based observations of gross primary productivity from the FLUXCOM project. Also, taking advantage of the relatively dense data networks over CONUS, we also evaluate the impact of the assimilation against in-situ measurements of soil moisture from the USCRN network (US Climate Reference Network) are used in the evaluation, together with river discharges from the United States Geophysical Survey (USGS) and the Global Runoff Data Centre (GRDC). Those data sets highlight the added value of assimilating satellite derived observations compared to an open-loop simulation (i.e. no assimilation). It is shown that LDAS-Monde has the ability not only to monitor land surface variables but also to forecast them, by providing improved initial conditions which impacts persist through time. LDAS-Monde reanalysis has a potential to be used to monitor extreme events like agricultural drought, also. Finally, limitations related to LDAS-Monde and current satellite-derived observations are exposed as well as several insights on how to use alternative datasets to analyze soil moisture and vegetation state.


2019 ◽  
Author(s):  
Shaoning Lv ◽  
Bernd Schalge ◽  
Pablo Saavedra Garfias ◽  
Clemens Simmer

Abstract. Microwave remote sensing is the most promising tool for monitoring global-scale near-surface soil moisture distributions. With the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions in orbit, considerable efforts are made to evaluate their soil moisture products via ground observations, forward microwave transfer simulation, and retrievals. Due to the large footprint of the satellite radiometers of about 40 km in diameter and the spatial heterogeneity of soil moisture, minimum sampling densities for soil moisture are required to challenge the targeted precision. Here we use 400 m resolution simulations with the regional terrestrial system model TerrSysMP and its coupling with the Community Microwave Emission Modelling platform (CMEM) to quantify sampling distance required for soil moisture and brightness temperature validation. Our analysis suggests that an overall sampling resolution of better than 6 km is required to validate the targeted accuracy of 0.04 cm3/cm3 (70 % confidence level) in SMOS and SMAP over typical midlatitude European regions. The minimum sampling resolution depends on the land-surface inhomogeneity and the meteorological situation, which influence the soil moisture patterns, and ranges from about 7 km to 17 km for a 70 % confidence level for a typical year. At the minimum sampling resolution for a 70 % confidence level also the accuracy of footprint-averaged brightness temperature estimates is equal or better than 15 K/10 K for H/V polarization. Estimates strongly deteriorate with sparser sampling densities, e.g., at 3/9 km with 3/5 sampling sites the confidence level of derived footprint estimates can reach about 0.5–0.6 for soil moisture which is much less than the standard 0.7 requirements for ground measurements. The representativeness of ground-based soil moisture and brightness temperature observations – and thus their required minimum sampling densities – are only weakly correlated in space and time. This study provides a basis for a better understanding of sometimes strong mismatches between derived satellite soil moisture products and ground-based measurements.


2019 ◽  
Author(s):  
Renaud Hostache ◽  
Dominik Rains ◽  
Kaniska Mallick ◽  
Marco Chini ◽  
Ramona Pelich ◽  
...  

Abstract. The main objective of this study is to investigate how brightness temperature observations from satellite microwave sensors may help in reducing errors and uncertainties in soil moisture simulations with a large-scale conceptual hydro-meteorological model. In particular, we use as forcings the ERA-Interim public dataset and we couple the CMEM radiative transfer model with a hydro-meteorological model enabling therefore soil moisture and SMOS-like brightness temperature simulations. The hydro-meteorological model is configured using recent developments of the SUPERFLEX framework, which enables tailoring the model structure to the specific needs of the application as well as to data availability and computational requirements. In this case, the model spatial resolution is adapted to the spatial grid of the satellite data, and the soil stratification is tailored to the satellite datasets to be assimilated and the forcing data. The hydrological model is first calibrated using a sample of SMOS brightness temperature observations (period 2010–2011). Next, SMOS-derived brightness temperature observations are sequentially assimilated into the coupled SUPERFLEX-CMEM model (period 2010–2015). For this experiment, a Local Ensemble Transform Kalman Filter is used and the meteorological forcings (ERA interim-based rainfall, air and soil temperature) are perturbed to generate a background ensemble. Each time a SMOS observation is available, the SUPERFLEX state variables related to the water content in the various soil layers are updated and the model simulations are resumed until the next SMOS observation becomes available. Our empirical results show that the SUPERFLEX-CMEM modelling chain is capable of predicting soil moisture at a performance level similar to that obtained for the same study area and with a quasi-identical experimental set up using the CLM land surface model. This shows that a simple model, when carefully calibrated, can yield performance level similar to that of a much more complex model. The correlation between simulated and in situ observed soil moisture ranges from 0.62 to 0.72. The assimilation of SMOS brightness temperature observation into the SUPERFLEX-CMEM modelling chain improves the correlation between predicted and in situ observed soil moisture by 0.03 on average showing improvements similar to those obtained using the CLM land surface model.


2020 ◽  
Author(s):  
Joost Buitink ◽  
Anne M. Swank ◽  
Martine van der Ploeg ◽  
Naomi E. Smith ◽  
Harm-Jan F. Benninga ◽  
...  

Abstract. The soil moisture status near the land surface is a key determinant of vegetation productivity. The critical soil moisture content determines the transition from an energy-limited to a water-limited evapotranspiration regime. This study quantifies the critical soil moisture content by comparison of in situ soil moisture profile measurements of the Raam and Twenthe networks in the Netherlands, with two satellite derived vegetation indices (NIRv and VOD) during the 2018 summer drought. The critical soil moisture content is obtained through a piece-wise linear correlation of the NIRv and VOD anomalies with soil moisture on different depths of the profile. This nonlinear relation reflects the observation that negative soil moisture anomalies develop weeks before the first reduction in vegetation indices. Furthermore, the inferred critical soil moisture content was found to increase with observation depth and this relationship is shown to be linear and distinctive per area, reflecting the tendency of roots to take up water from deeper layers when drought progresses. The relations of non-stressed towards water-stressed vegetation conditions on distinct depths are derived using Remote Sensing, enabling the parameterization of reduced evapotranspiration and its effect on GPP in models to study the impact of a drought on the carbon cycle.


2017 ◽  
Vol 18 (10) ◽  
pp. 2621-2645 ◽  
Author(s):  
Rolf H. Reichle ◽  
Gabrielle J. M. De Lannoy ◽  
Qing Liu ◽  
Joseph V. Ardizzone ◽  
Andreas Colliander ◽  
...  

Abstract The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (within 3 days from real time) and provides 3-hourly, global, 9-km resolution estimates of surface (0–5 cm) and root-zone (0–100 cm) soil moisture and land surface conditions. This study presents an overview of the L4_SM algorithm, validation approach, and product assessment versus in situ measurements. Core validation sites provide spatially averaged surface (root zone) soil moisture measurements for 43 (17) “reference pixels” at 9- and 36-km gridcell scales located in 17 (7) distinct watersheds. Sparse networks provide point-scale measurements of surface (root zone) soil moisture at 406 (311) locations. Core validation site results indicate that the L4_SM product meets its soil moisture accuracy requirement, specified as an unbiased RMSE (ubRMSE, or standard deviation of the error) of 0.04 m3 m−3 or better. The ubRMSE for L4_SM surface (root zone) soil moisture is 0.038 m3 m−3 (0.030 m3 m−3) at the 9-km scale and 0.035 m3 m−3 (0.026 m3 m−3) at the 36-km scale. The L4_SM estimates improve (significantly at the 5% level for surface soil moisture) over model-only estimates, which do not benefit from the assimilation of SMAP brightness temperature observations and have a 9-km surface (root zone) ubRMSE of 0.042 m3 m−3 (0.032 m3 m−3). Time series correlations exhibit similar relative performance. The sparse network results corroborate these findings over a greater variety of climate and land cover conditions.


Sign in / Sign up

Export Citation Format

Share Document