scholarly journals Technical Note: An open source library for processing weather radar data (<i>wradlib</i>)

2013 ◽  
Vol 17 (2) ◽  
pp. 863-871 ◽  
Author(s):  
M. Heistermann ◽  
S. Jacobi ◽  
T. Pfaff

Abstract. The potential of weather radar observations for hydrological and meteorological research and applications is undisputed, particularly with increasing world-wide radar coverage. However, several barriers impede the use of weather radar data. These barriers are of both scientific and technical nature. The former refers to inherent measurement errors and artefacts, the latter to aspects such as reading specific data formats, geo-referencing, visualisation. The radar processing library wradlib is intended to lower these barriers by providing a free and open source tool for the most important steps in processing weather radar data for hydro-meteorological and hydrological applications. Moreover, the community-based development approach of wradlib allows scientists to share their knowledge about efficient processing algorithms and to make this knowledge available to the weather radar community in a transparent, structured and well-documented way.

2012 ◽  
Vol 9 (11) ◽  
pp. 12333-12356 ◽  
Author(s):  
M. Heistermann ◽  
S. Jacobi ◽  
T. Pfaff

Abstract. The potential of weather radar observations for hydrological and meteorological research and applications is undisputed, particularly with increasing world-wide radar coverage. However, several barriers impede the use of weather radar data. These barriers are of both scientific and technical nature. The former refers to inherent measurement errors and artefacts, the latter to aspects such as reading specific data formats, geo-referencing, visualisation. The radar processing library wradlib is intended to lower these barriers by providing a free and open source tool for the most important steps in processing weather radar data for hydro-meteorological and hydrological applications. Moreover, the community-based development approach of wradlib allows scientists to share their knowledge about efficient processing algorithms and to make this knowledge available to the weather radar community in a transparent, structured and well-documented way.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mario Locati ◽  
Roberto Vallone ◽  
Matteo Ghetta ◽  
Nyall Dawson

An increasing number of web services providing convenient access to seismological data have become available in recent years. A huge effort at multiple levels was required to achieve this goal and the seismological community was engaged in the standardization of both data formats and web services. Although access to seismological data is much easier than in the past, users encounter problems because of the large number of web services, and due to the complexity of the discipline-specific data encodings. In addition, instead of adopting cross-disciplinary standards such as those by the Open Geospatial Consortium (OGC), most seismological web services created their own standards, primarily those by the International Federation of Digital Seismograph Networks (FDSN). This article introduces “QQuake,” a plugin for QGIS—the Open Source Geographic Information System—that aims at making access to seismological data easier. The plugin is based on an Open Source code available on GitHub, and it is designed in a modular and customizable way, allowing users to easily include new web services.


2010 ◽  
Vol 5 ◽  
pp. 37-48
Author(s):  
Markéta Potůčková ◽  
Eva Štefanová

European Space Agency (ESA) provides several open source toolboxes for visualization, processing and analyzing satellite images acquired both in optical and microwave domains. Basic ERS &amp; Envisat (A)ATSR and MERIS Toolbox (BEAM) was originally developed for easier handling ENVISAT optical data. Today this toolbox supports several raster data formats and datasets collected with other EO instruments such as MODIS, AVHRR, CHRIS/Proba. The NEXT ESA SAR Toolbox (NEST) has been created for processing radar data acquired from different satellites such as ERS 1&amp;2, ENVISAT, RADARSAT or TerraSAR X. Both toolboxes are suitable for the education of the basic principles of data processing (geometric and radiometric corrections, classification, filtering of radar data) but also for research. Possibilities for utilization of these toolboxes in remote sensing courses based on two examples of practical exercises are described. Use of the NEST toolbox is demonstrated on a research project dealing with snow cover detection from SAR imagery.


2015 ◽  
Vol 96 (1) ◽  
pp. 117-128 ◽  
Author(s):  
M. Heistermann ◽  
S. Collis ◽  
M. J. Dixon ◽  
S. Giangrande ◽  
J. J. Helmus ◽  
...  

Abstract Weather radar analysis has become increasingly sophisticated over the past 50 years, and efforts to keep software up to date have generally lagged behind the needs of the users. We argue that progress has been impeded by the fact that software has not been developed and shared as a community. Recently, the situation has been changing. In this paper, the developers of a number of open-source software (OSS) projects highlight the potential of OSS to advance radar-related research. We argue that the community-based development of OSS holds the potential to reduce duplication of efforts and to create transparency in implemented algorithms while improving the quality and scope of the software. We also conclude that there is sufficiently mature technology to support collaboration across different software projects. This could allow for consolidation toward a set of interoperable software platforms, each designed to accommodate very specific user requirements.


2021 ◽  
Vol 13 (10) ◽  
pp. 1989
Author(s):  
Raphaël Nussbaumer ◽  
Baptiste Schmid ◽  
Silke Bauer ◽  
Felix Liechti

Recent and archived data from weather radar networks are extensively used for the quantification of continent-wide bird migration patterns. While the process of discriminating birds from weather signals is well established, insect contamination is still a problem. We present a simple method combining two Doppler radar products within a Gaussian mixture model to estimate the proportions of birds and insects within a single measurement volume, as well as the density and speed of birds and insects. This method can be applied to any existing archives of vertical bird profiles, such as the European Network for the Radar surveillance of Animal Movement repository, with no need to recalculate the huge amount of original polar volume data, which often are not available.


2021 ◽  
Vol 10 (4) ◽  
pp. 207
Author(s):  
Annie Gray ◽  
Colin Robertson ◽  
Rob Feick

Citizen science initiatives span a wide range of topics, designs, and research needs. Despite this heterogeneity, there are several common barriers to the uptake and sustainability of citizen science projects and the information they generate. One key barrier often cited in the citizen science literature is data quality. Open-source tools for the analysis, visualization, and reporting of citizen science data hold promise for addressing the challenge of data quality, while providing other benefits such as technical capacity-building, increased user engagement, and reinforcing data sovereignty. We developed an operational citizen science tool called the Community Water Data Analysis Tool (CWDAT)—a R/Shiny-based web application designed for community-based water quality monitoring. Surveys and facilitated user-engagement were conducted among stakeholders during the development of CWDAT. Targeted recruitment was used to gather feedback on the initial CWDAT prototype’s interface, features, and potential to support capacity building in the context of community-based water quality monitoring. Fourteen of thirty-two invited individuals (response rate 44%) contributed feedback via a survey or through facilitated interaction with CWDAT, with eight individuals interacting directly with CWDAT. Overall, CWDAT was received favourably. Participants requested updates and modifications such as water quality thresholds and indices that reflected well-known barriers to citizen science initiatives related to data quality assurance and the generation of actionable information. Our findings support calls to engage end-users directly in citizen science tool design and highlight how design can contribute to users’ understanding of data quality. Enhanced citizen participation in water resource stewardship facilitated by tools such as CWDAT may provide greater community engagement and acceptance of water resource management and policy-making.


2015 ◽  
Vol 22 (4) ◽  
pp. 746-753 ◽  
Author(s):  
Roxana Cică ◽  
Sorin Burcea ◽  
Roxana Bojariu
Keyword(s):  

2006 ◽  
Vol 25 (2) ◽  
pp. 95 ◽  
Author(s):  
Deborah L. MacPherson

This paper discusses some of the problems associated with search and digital-rights management in the emerging age of interconnectivity. An open-source system called Context Driven Topologies (CDT) is proposed to create one global context of geography, knowledge domains, and Internet addresses, using centralized spatial databases, geometry, and maps. The same concept can be described by different words, the same image can be interpreted a thousand ways by every viewer, but mathematics is a set of rules to ensure that certain relationships or sequences will be precisely regenerated. Therefore, unlike most of today’s digital records, CDTs are based on mathematics first, images second, words last. The aim is to permanently link the highest quality events, artifacts, ideas, and information into one record documenting the quickest paths to the most relevant information for specific data, users, and tasks. A model demonstration project using CDT to organize, search, and place information in new contexts while protecting the authors’ intent is also introduced.


2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Daniel Michelson ◽  
Bjarne Hansen ◽  
Dominik Jacques ◽  
François Lemay ◽  
Peter Rodriguez

Sign in / Sign up

Export Citation Format

Share Document