scholarly journals Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate

2014 ◽  
Vol 18 (3) ◽  
pp. 1165-1188 ◽  
Author(s):  
J. Chirouze ◽  
G. Boulet ◽  
L. Jarlan ◽  
R. Fieuzal ◽  
J. C. Rodriguez ◽  
...  

Abstract. Instantaneous evapotranspiration rates and surface water stress levels can be deduced from remotely sensed surface temperature data through the surface energy budget. Two families of methods can be defined: the contextual methods, where stress levels are scaled on a given image between hot/dry and cool/wet pixels for a particular vegetation cover, and single-pixel methods, which evaluate latent heat as the residual of the surface energy balance for one pixel independently from the others. Four models, two contextual (S-SEBI and a modified triangle method, named VIT) and two single-pixel (TSEB, SEBS) are applied over one growing season (December–May) for a 4 km × 4 km irrigated agricultural area in the semi-arid northern Mexico. Their performance, both at local and spatial standpoints, are compared relatively to energy balance data acquired at seven locations within the area, as well as an uncalibrated soil–vegetation–atmosphere transfer (SVAT) model forced with local in situ data including observed irrigation and rainfall amounts. Stress levels are not always well retrieved by most models, but S-SEBI as well as TSEB, although slightly biased, show good performance. The drop in model performance is observed for all models when vegetation is senescent, mostly due to a poor partitioning both between turbulent fluxes and between the soil/plant components of the latent heat flux and the available energy. As expected, contextual methods perform well when contrasted soil moisture and vegetation conditions are encountered in the same image (therefore, especially in spring and early summer) while they tend to exaggerate the spread in water status in more homogeneous conditions (especially in winter). Surface energy balance models run with available remotely sensed products prove to be nearly as accurate as the uncalibrated SVAT model forced with in situ data.

2013 ◽  
Vol 10 (1) ◽  
pp. 895-963 ◽  
Author(s):  
J. Chirouze ◽  
G. Boulet ◽  
L. Jarlan ◽  
R. Fieuzal ◽  
J. C. Rodriguez ◽  
...  

Abstract. Remotely sensed surface temperature can provide a good proxy for water stress level and is therefore particularly useful to estimate spatially distributed evapotranspiration. Instantaneous stress levels or instantaneous latent heat flux are deduced from the surface energy balance equation constrained by this equilibrium temperature. Pixel average surface temperature depends on two main factors: stress and vegetation fraction cover. Methods estimating stress vary according to the way they treat each factor. Two families of methods can be defined: the contextual methods, where stress levels are scaled on a given image between hot/dry and cool/wet pixels for a particular vegetation cover, and single-pixel methods which evaluate latent heat as the residual of the surface energy balance for one pixel independently from the others. Four models, two contextual (S-SEBI and a triangle method, inspired by Moran et al., 1994) and two single-pixel (TSEB, SEBS) are applied at seasonal scale over a four by four km irrigated agricultural area in semi-arid northern Mexico. Their performances, both at local and spatial standpoints, are compared relatively to energy balance data acquired at seven locations within the area, as well as a more complex soil-vegetation-atmosphere transfer model forced with true irrigation and rainfall data. Stress levels are not always well retrieved by most models, but S-SEBI as well as TSEB, although slightly biased, show good performances. Drop in model performances is observed when vegetation is senescent, mostly due to a poor partitioning both between turbulent fluxes and between the soil/plant components of the latent heat flux and the available energy. As expected, contextual methods perform well when extreme hydric and vegetation conditions are encountered in the same image (therefore, esp. in spring and early summer) while they tend to exaggerate the spread in water status in more homogeneous conditions (esp. in winter).


2018 ◽  
Vol 10 (11) ◽  
pp. 1806 ◽  
Author(s):  
Emilie Delogu ◽  
Gilles Boulet ◽  
Albert Olioso ◽  
Sébastien Garrigues ◽  
Aurore Brut ◽  
...  

Using surface temperature as a signature of the surface energy balance is a way to quantify the spatial distribution of evapotranspiration and water stress. In this work, we used the new dual-source model named Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) based on the Two Sources Energy Balance (TSEB) model rationale which solves the surface energy balance equations for the soil and the canopy. SPARSE can be used (i) to retrieve soil and vegetation stress levels from known surface temperature and (ii) to predict transpiration, soil evaporation, and surface temperature for given stress levels. The main innovative feature of SPARSE is that it allows to bound each retrieved individual flux component (evaporation and transpiration) by its corresponding potential level deduced from running the model in prescribed potential conditions, i.e., a maximum limit if the surface water availability is not limiting. The main objective of the paper is to assess the SPARSE model predictions of water stress and evapotranspiration components for its two proposed versions (the “patch” and “layer” resistances network) over 20 in situ data sets encompassing distinct vegetation and climate. Over a large range of leaf area index values and for contrasting vegetation stress levels, SPARSE showed good retrieval performances of evapotranspiration and sensible heat fluxes. For cereals, the layer version provided better latent heat flux estimates than the patch version while both models showed similar performances for sparse crops and forest ecosystems. The bounded layer version of SPARSE provided the best estimates of latent heat flux over different sites and climates. Broad tendencies of observed and retrieved stress intensities were well reproduced with a reasonable difference obtained for most of the points located within a confidence interval of 0.2. The synchronous dynamics of observed and retrieved estimates underlined that the SPARSE retrieved water stress estimates from Thermal Infra-Red data were relevant tools for stress detection.


2021 ◽  
Author(s):  
Ivonne Trebs ◽  
Kaniska Mallick ◽  
Nishan Bhattarai ◽  
Mauro Sulis ◽  
James Cleverly ◽  
...  

<p>‘Aerodynamic resistance’ (hereafter r<sub>a</sub>) is a preeminent variable in the modelling of evapotranspiration (ET), and its accurate quantification plays a critical role in determining the performance and consistency of thermal remote sensing-based surface energy balance (SEB) models for estimating ET at local to regional scales. Atmospheric stability links r<sub>a</sub> with land surface temperature (LST) and the representation of their interactions in the SEB models determines the accuracy of ET estimates.</p><p>The present study investigates the influence of r<sub>a</sub> and its relation to LST uncertainties on the performance of three structurally different SEB models by combining nine OzFlux eddy covariance datasets from 2011 to 2019 from sites of different aridity in Australia with MODIS Terra and Aqua LST and leaf area index (LAI) products. Simulations of the latent heat flux (LE, energy equivalent of ET in W/m<sup>2</sup>) from the SPARSE (Soil Plant Atmosphere and Remote Sensing Evapotranspiration), SEBS (Surface Energy Balance System) and STIC (Surface Temperature Initiated Closure) models forced with MODIS LST, LAI, and in-situ meteorological datasets were evaluated using observed flux data across water-limited (semi-arid and arid) and radiation-limited (mesic) ecosystems.</p><p>Our results revealed that the three models tend to overestimate instantaneous LE in the water-limited shrubland, woodland and grassland ecosystems by up to 60% on average, which was caused by an underestimation of the sensible heat flux (H). LE overestimation was associated with discrepancies in r<sub>a</sub> retrievals under conditions of high atmospheric instability, during which errors in LST (expressed as the difference between MODIS LST and in-situ LST) apparently played a minor role. On the other hand, a positive bias in LST coincides with low r<sub>a</sub> and causes slight underestimation of LE at the water-limited sites. The impact of r<sub>a</sub> on the LE residual error was found to be of the same magnitude as the influence of errors in LST in the semi-arid ecosystems as indicated by variable importance in projection (VIP) coefficients from partial least squares regression above unity. In contrast, our results for mesic forest ecosystems indicated minor dependency on r<sub>a</sub> for modelling LE (VIP<0.4), which was due to a higher roughness length and lower LST resulting in dominance of mechanically generated turbulence, thereby diminishing the importance of atmospheric stability in the determination of r<sub>a</sub>.</p>


2020 ◽  
pp. 1-16
Author(s):  
Tim Hill ◽  
Christine F. Dow ◽  
Eleanor A. Bash ◽  
Luke Copland

Abstract Glacier surficial melt rates are commonly modelled using surface energy balance (SEB) models, with outputs applied to extend point-based mass-balance measurements to regional scales, assess water resource availability, examine supraglacial hydrology and to investigate the relationship between surface melt and ice dynamics. We present an improved SEB model that addresses the primary limitations of existing models by: (1) deriving high-resolution (30 m) surface albedo from Landsat 8 imagery, (2) calculating shadows cast onto the glacier surface by high-relief topography to model incident shortwave radiation, (3) developing an algorithm to map debris sufficiently thick to insulate the glacier surface and (4) presenting a formulation of the SEB model coupled to a subsurface heat conduction model. We drive the model with 6 years of in situ meteorological data from Kaskawulsh Glacier and Nàłùdäy (Lowell) Glacier in the St. Elias Mountains, Yukon, Canada, and validate outputs against in situ measurements. Modelled seasonal melt agrees with observations within 9% across a range of elevations on both glaciers in years with high-quality in situ observations. We recommend applying the model to investigate the impacts of surface melt for individual glaciers when sufficient input data are available.


2019 ◽  
Vol 11 (24) ◽  
pp. 3044 ◽  
Author(s):  
João P. A. Martins ◽  
Isabel F. Trigo ◽  
Nicolas Ghilain ◽  
Carlos Jimenez ◽  
Frank-M. Göttsche ◽  
...  

A new all-weather land surface temperature (LST) product derived at the Satellite Application Facility on Land Surface Analysis (LSA-SAF) is presented. It is the first all-weather LST product based on visible and infrared observations combining clear-sky LST retrieved from the Spinning Enhanced Visible and Infrared Imager on Meteosat Second Generation (MSG/SEVIRI) infrared (IR) measurements with LST estimated with a land surface energy balance (EB) model to fill gaps caused by clouds. The EB model solves the surface energy balance mostly using products derived at LSA-SAF. The new product is compared with in situ observations made at 3 dedicated validation stations, and with a microwave (MW)-based LST product derived from Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) measurements. The validation against in-situ LST indicates an accuracy of the new product between -0.8 K and 1.1 K and a precision between 1.0 K and 1.4 K, generally showing a better performance than the MW product. The EB model shows some limitations concerning the representation of the LST diurnal cycle. Comparisons with MW LST generally show higher LST of the new product over desert areas, and lower LST over tropical regions. Several other imagers provide suitable measurements for implementing the proposed methodology, which offers the potential to obtain a global, nearly gap-free LST product.


Sign in / Sign up

Export Citation Format

Share Document