scholarly journals Cloud obstruction and snow cover in Alpine areas from MODIS products

2014 ◽  
Vol 18 (11) ◽  
pp. 4579-4600 ◽  
Author(s):  
P. Da Ronco ◽  
C. De Michele

Abstract. Snow cover maps provide information of great practical interest for hydrologic purposes: when combined with point values of snow water equivalent (SWE), they enable estimation of the regional snow resource. In this context, Earth observation satellites are an interesting tool for evaluating large scale snow distribution and extension. MODIS (MODerate resolution Imaging Spectroradiometer on board Terra and Aqua satellites) daily Snow Covered Area product has been widely tested and proved to be appropriate for hydrologic applications. However, within a daily map the presence of cloud cover can hide the ground, thus obstructing snow detection. Here, we consider MODIS binary products for daily snow mapping over the Po River basin. Ten years (2003–2012) of MOD10A1 and MYD10A1 snow maps have been analysed and processed with the support of a 500 m resolution Digital Elevation Model (DEM). We first investigate the issue of cloud obstruction, highlighting its dependence on altitude and season. Snow maps seem to suffer the influence of overcast conditions mainly in mountain and during the melting period. Thus, cloud cover highly influences those areas where snow detection is regarded with more interest. In spring, the average percentages of area lying beneath clouds are in the order of 70%, for altitudes over 1000 m a.s.l. Then, starting from previous studies, we propose a cloud removal procedure and we apply it to a wide area, characterized by high geomorphological heterogeneity such as the Po River basin. In conceiving the new procedure, our first target was to preserve the daily temporal resolution of the product. Regional snow and land lines were estimated for detecting snow cover dependence on elevation. In cases when there was not enough information on the same day within the cloud-free areas, we used temporal filters with the aim of reproducing the micro-cycles which characterize the transition altitudes, where snow does not stand continually over the entire winter. In the validation stage, the proposed procedure was compared against others, showing improvements in the performance for our case study. The accuracy is assessed by applying the procedure to clear-sky maps masked with additional cloud cover. The average value is higher than 95% considering 40 days chosen over all seasons. The procedure also has advantages in terms of input data and computational effort requirements.

2014 ◽  
Vol 11 (4) ◽  
pp. 3967-4015 ◽  
Author(s):  
P. Da Ronco ◽  
C. De Michele

Abstract. Snow cover maps provide an information of great practical interest for hydrologic purposes: when combined with point values of snow water equivalent (SWE), they allow to estimate the regional snow resource. Earth observation satellites are an interesting tool for evaluating large scale snow distribution and extension. In this context, MODIS (MODerate resolution Imaging Spectroradiometeron on board Terra and Aqua satellites) daily Snow Covered Area product has been widely tested and proved to be appropriate for hydrologic applications. However, within a daily map the presence of cloudiness can hide the ground, thus preventing snow detection. Here, we considered MODIS binary products for daily snow mapping over Po river basin. Modeling the variability of snow cover duration, distribution and snow water equivalent is a first important step in investigating climate change impacts on the regime of the major Italian river. Ten years (2003–2012) of MOD10A1 and MYD10A1 snow maps have been analyzed and processed with the support of 500 m-resolution Digital Elevation Model (DEM). We firstly investigated the issue of cloudiness, highlighting its dependence on altitude and season. Snow maps seem to suffer the influence of overcast conditions mainly in mountain and during the melting season. Such a result is certainly related to satellite crossing times, since cloud coverage over mountains usually increases in the afternoon: however, in Aqua and Terra snow products it highly influences those areas where snow detection is regarded with more interest. In spring, the average percentages of area lying beneath clouds are in the order of 70%, for altitudes over 1000 m a.s.l. Then, on the basis of previous studies, we proposed a cloud removal procedure and its application to a wide area, characterized by high topographic and geomorphological heterogeneities such as northern Italy. While conceiving the new method, our first target was to preserve the daily temporal resolution of the product. Regional snow and land lines were estimated for detecting snow cover dependence on elevation. In cases when there were not enough information on the same day within the cloud-free areas, we improved a temporal filter with the aim of reproducing the micro-cycles which characterize the transition altitudes, where snow does not stand continually over the entire winter. In the validation stage, the proposed procedure has been compared against others, showing improvements in the performance for our case study. At the same time it results quite handy both in terms of input data required and computational effort.


Environments ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 25
Author(s):  
Caterina M. Antognazza ◽  
Isabella Vanetti ◽  
Vanessa De Santis ◽  
Adriano Bellani ◽  
Monica Di Francesco ◽  
...  

The reintroduction of the extinct beluga sturgeon (Huso huso L.), an anadromous species with economic and traditional relevance, is a priority in next conservation strategies in Northern Italy. The EU-LIFE NATURA project aims to reintroduce the beluga sturgeon in the Po River basin through a captive breeding program. Critical requirements for the success of the program are river connectivity and knowledge of genetic diversity of the selected broodstocks to ensure self-sustainability of reintroduced populations. Here, the four broodstocks used for the reintroduction of beluga sturgeon have been genetically screened, genotyping 13 loci and sequencing mitochondrial DNA cytochrome b (Cyt b) gene and the entire mitochondrial DNA control region (D-Loop). The four broodstocks showed a medium-high level of nuclear genetic variability and the presence of two sub-populations, evidencing a total level of inbreeding coefficients able to sustain the good potential as future breeders. Mitochondrial analyses showed a genetic variability comparable to wild populations, further strengthening the positive potential of the investigated broodstock. Therefore, this study, showed how the degree of genetic diversity found within the four broodstocks used for H. huso reintroduction in the Po River basin could be suitable to ensure the success of the program, avoiding the inbreeding depression associated with founder effect and captive breeding.


Author(s):  
Silvia Marková ◽  
Catia Maurone ◽  
Erica Racchetti ◽  
Marco Bartoli ◽  
Valeria Rossi

<p>Shallow water bodies dominate the areal extent of continental waters and host a proportion of biodiversity higher than the percentage of Earth’s surface they cover. <em>Daphnia</em> is a key component of small aquatic ecosystems food webs. Here we present the result of a survey in 24 ponds located in the core of Po river Basin, to assess the actual spreading of <em>Daphnia</em> species in one of the most productive areas of the Northern hemisphere. By using diagnostic genetic markers (<em>12S rRNA </em>and <em>ND5 </em>genes) we identified five <em>Daphnia</em> species: <em>D. ambigua</em>, <em>D. curvirostris</em>, <em>D. longispina</em>, <em>D. obtusa</em> and <em>D. pulex </em>in fourteen ponds. Additional analyses of two nuclear genes (<em>LdhA</em> and <em>Rab4</em>) revealed that <em>D. pulex</em> in the study area is native European strain. In opposite, <em>D. ambigua</em> shared haplotype with the North-Eastern American lineage that was introduced to Europe by long-distance dispersal. In the Po river Basin we identified a highly divergent lineage of <em>D. longispina </em>group that formed a clade with individuals from northern European Russia and might represent a new <em>Daphnia </em>species. <em>Daphnia</em> species in the Cremona province have European origin, except for <em>D. ambigua</em> which is a North American species spreading across Europe. Future attention will require monitoring of invasive species, particularly <em>D. ambigua</em> and the North American invasive clone of <em>D. pulex </em>that is already present in Northern Italy. </p>


Author(s):  
Rui Zhang ◽  
Zongxue Xu ◽  
Depeng Zuo ◽  
Chunguang Ban

Abstract Snow cover is highly sensitive to global climate change and strongly influences the climate at global and regional scales. Because of limited in situ observations, snow cover dynamics in the Nyang River basin (NRB) have been examined in few studies. Five snow cover indices derived from observation and remote sensing data from 2000 to 2018 were used to investigate the spatial and temporal variation of snow cover in the NRB. There was clear seasonality in the snow cover throughout the entire basin. The maximum snow-covered area was 8,751.35 km2, about 50% of the total basin area, and occurred in March. The maximum snow depth (SD) was 5.35 cm and was found at the northern edge of the middle reaches of the basin. Snow cover frequency, SD, and fraction of snow cover area increased with elevation. The decrease in SD was the most marked in the elevation range of 5,000–6,000 m. Above 6,000 m, the snow water equivalent showed a slight upward trend. There was a significant negative correlation between snow cover and temperature. The results of this study could improve our understanding of changes in snow cover in the NRB from multivariate perspectives. It is better for water resources management.


2021 ◽  
Vol 11 (18) ◽  
pp. 8365
Author(s):  
Liming Gao ◽  
Lele Zhang ◽  
Yongping Shen ◽  
Yaonan Zhang ◽  
Minghao Ai ◽  
...  

Accurate simulation of snow cover process is of great significance to the study of climate change and the water cycle. In our study, the China Meteorological Forcing Dataset (CMFD) and ERA-Interim were used as driving data to simulate the dynamic changes in snow depth and snow water equivalent (SWE) in the Irtysh River Basin from 2000 to 2018 using the Noah-MP land surface model, and the simulation results were compared with the gridded dataset of snow depth at Chinese meteorological stations (GDSD), the long-term series of daily snow depth dataset in China (LSD), and China’s daily snow depth and snow water equivalent products (CSS). Before the simulation, we compared the combinations of four parameterizations schemes of Noah-MP model at the Kuwei site. The results show that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation process, while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow surface albedo (ALB) schemes mainly affect the melting process. The effect of STC on the simulation results was much higher than the other three schemes; when STC uses a fully implicit scheme, the error of simulated snow depth and snow water equivalent is much greater than that of a semi-implicit scheme. At the basin scale, the accuracy of snow depth modeled by using CMFD and ERA-Interim is higher than LSD and CSS snow depth based on microwave remote sensing. In years with high snow cover, LSD and CSS snow depth data are seriously underestimated. According to the results of model simulation, it is concluded that the snow depth and snow water equivalent in the north of the basin are higher than those in the south. The average snow depth, snow water equivalent, snow days, and the start time of snow accumulation (STSA) in the basin did not change significantly during the study period, but the end time of snow melting was significantly advanced.


Manuscript ◽  
2021 ◽  
pp. 1360-1366
Author(s):  
Alexander Vasilyevich Kutishchev ◽  

2004 ◽  
Vol 18 (9) ◽  
pp. 1595-1611 ◽  
Author(s):  
N. P. Molotch ◽  
S. R. Fassnacht ◽  
R. C. Bales ◽  
S. R. Helfrich

Drought ◽  
2018 ◽  
pp. 201-215 ◽  
Author(s):  
Dario Musolino ◽  
Claudia Vezzani ◽  
Antonio Massarutto

Sign in / Sign up

Export Citation Format

Share Document