scholarly journals Shift of annual water balance in the Budyko space for catchments with groundwater-dependent evapotranspiration

2016 ◽  
Vol 20 (9) ◽  
pp. 3673-3690 ◽  
Author(s):  
Xu-Sheng Wang ◽  
Yangxiao Zhou

Abstract. The Budyko framework represents the general relationship between the evapotranspiration ratio (F) and the aridity index (φ) for the mean annual steady-state water balance at the catchment scale. It is interesting to investigate whether this standard F − φ space can also be applied to capture the shift of annual water balance in catchments with varying dryness. Previous studies have made significant progress in incorporating the storage effect into the Budyko framework for the non-steady conditions, whereas the role of groundwater-dependent evapotranspiration was not investigated. This study investigates how groundwater-dependent evapotranspiration causes the shift of the annual water balance in the standard Budyko space. A widely used monthly hydrological model, the ABCD model, is modified to incorporate groundwater-dependent evapotranspiration into the zone with a shallow water table and delayed groundwater recharge into the zone with a deep water table. This model is applied in six catchments in the Erdos Plateau, China, to estimate the actual annual evapotranspiration. Results show that the variations in the annual F value with the aridity index do not satisfy the standard Budyko formulas. The shift of the annual water balance in the standard Budyko space is a combination of the Budyko-type response in the deep groundwater zone and the quasi-energy limited condition in the shallow groundwater zone. Excess evapotranspiration (F > 1) could occur in dry years, which is contributed by the significant supply of groundwater for evapotranspiration. Use of groundwater for irrigation can increase the frequency of the F > 1 cases.

2015 ◽  
Vol 12 (11) ◽  
pp. 11613-11650 ◽  
Author(s):  
X.-S. Wang ◽  
Y. Zhou

Abstract. Empirical equations have been formulated for the general relationship between the evapotranspiration ratio (F) and the aridity index (φ) in the Budyko framework. Though it is normally applied for mean annual behaviors, the Budyko hypothesis has been directly adopted to analyze the interannual change in water balance. However, there are reported cases where the annual evapotranspiration ratio is larger than 1.0 (F > 1). This study reveals the effects of groundwater dependent evapotranspiration in triggering such abnormal shift of annual water balance in the Budyko space. A widely used monthly hydrological model, the ABCD model, is modified to incorporate the groundwater dependent evapotranspiration in the zone with shallow water table and delayed groundwater recharge in the zone with deep water table. This model is applied in the Hailiutu River catchment in China. Results show that the variations in the annual evapotranspiration ratio with aridity index do not satisfy the traditional Budyko hypothesis. The shift of the annual water balance in the Budyko space depends on the proportion of shallow water table area, intensity of groundwater dependent evapotranspiration, and the normal Budyko-type trend of F in the deep groundwater zone. Excess evapotranspiration (F > 1) could occur in extreme dry years, which is enhanced by groundwater-dependent evapotranspiration. Use of groundwater for irrigation may increase the frequency of occurrence of the F > 1 cases.


2020 ◽  
Vol 585 ◽  
pp. 124583 ◽  
Author(s):  
Martin Le Mesnil ◽  
Jean-Baptiste Charlier ◽  
Roger Moussa ◽  
Yvan Caballero ◽  
Nathalie Dörfliger

2009 ◽  
Vol 65 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Tomoyoshi HIROTA ◽  
Yukiyoshi IWATA ◽  
Manabu NEMOTO ◽  
Takahiro HAMASAKI ◽  
Ryoji SAMESHIMA ◽  
...  

2021 ◽  
Author(s):  
Renata Romanowicz ◽  
Emilia Karamuz ◽  
Jaroslaw Napiorkowski ◽  
Tesfaye Senbeta

<div> <p>Water balance modelling is often applied in studies of climate and human impacts on water resources. Annual water balance is usually derived based on precipitation, discharge and temperature observations under an assumption of negligible changes in annual water storage in a catchment. However, that assumption might be violated during very dry or very wet years. In this study we apply groundwater level measurements to improve water balance modelling in nine sub-catchments of the River Vistula basin starting from the river sources downstream. Annual and inter-annual water balance is studied using a Budyko framework to assess actual evapotranspiration and total water supply. We apply the concept of effective precipitation to account for possible losses due to water interception by vegetation. Generalised Likelihood Uncertainty Estimation GLUE is used to account for parameter and structural model uncertainty, together with the application of eight Budyko-type equations. Seasonal water balance models show large errors for winter seasons while summer and annual water balance models follow the Budyko framework. The dryness index is much smaller in winter than in summer for all sub-catchments. The spatial variability of water balance modelling errors indicate an increasing uncertainty of model predictions with an increase in catchment size. The results show that the added information on storage changes in the catchments provided by groundwater level observations largely improves model accuracy. The results also indicate the need to model groundwater level variability depending on external factors such as precipitation and evapotranspiration and human interventions. The modelling tools developed will be used to assess future water balance in the River Vistula basin under different water management scenarios and climate variability.</p> </div>


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1824 ◽  
Author(s):  
Jessica Driscoll ◽  
Thomas Meixner ◽  
Noah Molotch ◽  
Ty Ferre ◽  
Mark Williams ◽  
...  

A method for quantifying the role of dynamic storage as a physical buffer between snowmelt and streamflow at the catchment scale is introduced in this paper. The method describes a quantitative relation between hydrologic events (e.g., snowmelt) and responses (e.g., streamflow) by generating event-response ellipses that can be used to (a) characterize and compare catchment-scale dynamic storage processes, and (b) assess the closure of the water balance. Event-response ellipses allow for the role of dynamic, short-term storage to be quantified and compared between seasons and between catchments. This method is presented as an idealization of the system: a time series of a snowmelt event as a portion of a sinusoidal wave function. The event function is then related to a response function, which is the original event function modified mathematically through phase and magnitude shifts to represent the streamflow response. The direct relation of these two functions creates an event-response ellipse with measurable characteristics (e.g., eccentricity, angle). The ellipse characteristics integrate the timing and magnitude difference between the hydrologic event and response to quantify physical buffering through dynamic storage. Next, method is applied to eleven snowmelt seasons in two well-instrumented headwater snowmelt-dominated catchments with known differences in storage capacities. Results show the time-period average daily values produce different event-response ellipse characteristics for the two catchments. Event-response ellipses were also generated for individual snowmelt seasons; however, these annual applications of the method show more scatter relative to the time period averaged values. The event-response ellipse method provides a method to compare and evaluate the connectivity between snowmelt and streamflow as well as assumptions of water balance.


Sign in / Sign up

Export Citation Format

Share Document