scholarly journals Review "Water levels of the Mekong River Basin..."

2017 ◽  
Author(s):  
Anonymous
2017 ◽  
Author(s):  
Eva Boergens ◽  
Karina Nielsen ◽  
Ole B. Andersen ◽  
Denise Dettmering ◽  
Florian Seitz

Abstract. In this study we use CryoSat-2 SAR (Delay-Doppler Synthetic Aperture Radar) data over the Mekong River Basin to estimate water levels. Smaller inland waters can be observed with CryoSat-2 data with a higher accuracy compared to the classical radar altimeters due to the increased along track resolution of SAR and the smaller footprint. However, even with this SAR data the estimation of water levels over smaller (width less than 500 m) is still challenging as only very few consecutive observations over the water body are present. The usage of land-water-masks for target identification tends to fail as the river becomes smaller. Therefore, we developed a classification to divide the observations into water and land observations based solely on the observations. The classification is done with an unsupervised classification algorithm, and it is based on features derived from the SAR and RIP (Range Integrated Power) waveforms. After the classification, classes representing water and land are identified. The measurements classified as water are used in a next step to estimate water levels for each crossing over the Mekong River. The resulting water levels are validated and compared to gauge data, Envisat data and CryoSat-2 water levels derived with a land-water mask. The CryoSat-2 classified water levels perform better than results based on the land-water-mask and Envisat. Especially, in the smaller upstream regions the improvements of the classification approach for CryoSat-2 are evident.


2019 ◽  
Vol 11 (22) ◽  
pp. 2684 ◽  
Author(s):  
Kim ◽  
Lee ◽  
Chang ◽  
Bui ◽  
Jayasinghe ◽  
...  

Estimating river discharge (Q) is critical for ecosystems and water resource management. Traditionally, estimating Q has depended on a single rating curve or the Manning equation. In contrast to the single rating curve, several rating curves at different locations have been linearly combined in an ensemble learning regression method to estimate Q (ELQ) at the Brazzaville gauge station in the central Congo River in a previous study. In this study, we further tested the proposed ELQ and apply it to the Lower Mekong River Basin (LMRB) with three locations: Stung Treng, Kratie, and Tan Chau. Two major advancements for estimating Q with ELQ are presented. First, ELQ successfully estimated Q at Tan Chau, downstream of Kratie, where hydrodynamic complexities exist. Since the hydrologic characteristics downstream of Kratie are extremely diverse and complex in time and space, most previous studies have estimated Q only upstream from Kratie with hydrologic models and statistical methods. Second, we estimated Q over the LMRB using ELQ with water levels (H) obtained from two radar altimetry missions, Envisat and Jason-2, which made it possible to estimate Q seamlessly from 2003 to 2016. Owing to ELQ with multi-mission radar altimetry data, we have overcome the problems of a single rating curve: Locations for estimating Q have to be close to virtual stations, e.g., a few tens of kilometers, because the performance of the single rating curve degrades as the distance between the location of Q estimation and a virtual station increases. Therefore, most previous studies had not used Jason-2 data whose cross-track interval is about 315 km at the equator. On the contrary, several H obtained from Jason-2 altimetry were used in this study regardless of distances from in-situ Q stations since the ELQ method compensates for degradation in the performance for Q estimation due to the poor rating curve with virtual stations away from in-situ Q stations. In general, the ELQ-estimated Q (QELQ) showed more accurate results compared to those obtained from a single rating curve. In the case of Tan Chau, the root mean square error (RMSE) of QELQ decreased by 1504/1338 m3/s using Envisat-derived H for the training/validation datasets. We successfully applied ELQ to the LMRB, which is one of the most complex basins to estimate Q with multi-mission radar altimetry data. Furthermore, our method can be used to obtain finer temporal resolution and enhance the performance of Q estimation with the current altimetry missions, such as Sentinel-3A/B and Jason-3.


Oryx ◽  
2005 ◽  
Vol 39 (3) ◽  
pp. 301-310 ◽  
Author(s):  
Ian G. Baird ◽  
Isabel L. Beasley

Irrawaddy dolphins Orcaella brevirostiris are found in coastal waters from the Bay of Bengal east to Palawan, Philippines and south to northern Australia. They also occur in three large tropical river systems in South-east Asia: the Mekong, Mahakam and Ayeyarwady. In March and May 1997 approximately 350 km of riverine habitat in parts of north-east Cambodia were surveyed, discussions took place with local people, and reported dry season dolphin habitat was mapped. Our objectives were to investigate the status, habitat and distribution of dolphins in north-east Cambodia and identify threats to the continued survival of dolphins in the Mekong River Basin. Nine groups of dolphins were observed in the Mekong River. A ‘best’ estimate of 40 animals were seen. Irrawaddy dolphins were generally confined to sections of the river with water levels >8–10 m during the dry season. It appears that the Mekong River dolphin population is rapidly declining. In 1997 there were probably no more than 100¨C150 dolphins left in north-east Cambodia (including southern Laos) and no more than 200 within the entire Mekong River Basin, although these numbers remain tentative. Anthropogenic mortality is high, albeit largely unintentional, and there is considerable risk that the dolphin population will become locally extinct in the Mekong River in the near future. The establishment of community-managed deep water Fish Conservation Zones with government support may represent the best opportunity for reducing dry season dolphin mortality from large-meshed gillnet entanglement. Efforts to establish protected areas for dolphins are currently underway.


2021 ◽  
Vol 765 ◽  
pp. 144494
Author(s):  
He Chen ◽  
Junguo Liu ◽  
Ganquan Mao ◽  
Zifeng Wang ◽  
Zhenzhong Zeng ◽  
...  

2021 ◽  
Vol 36 ◽  
pp. 100873
Author(s):  
Yishan Li ◽  
Hui Lu ◽  
Kun Yang ◽  
Wei Wang ◽  
Qiuhong Tang ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 303
Author(s):  
Shi Hu ◽  
Xingguo Mo

Using the Global Land Surface Satellite (GLASS) leaf area index (LAI), the actual evapotranspiration (ETa) and available water resources in the Mekong River Basin were estimated with the Remote Sensing-Based Vegetation Interface Processes Model (VIP-RS). The relative contributions of climate variables and vegetation greening to ETa were estimated with numerical experiments. The results show that the average ETa in the entire basin increased at a rate of 1.16 mm year−2 from 1980 to 2012 (36.7% of the area met the 95% significance level). Vegetation greening contributed 54.1% of the annual ETa trend, slightly higher than that of climate change. The contributions of air temperature, precipitation and the LAI were positive, whereas contributions of solar radiation and vapor pressure were negative. The effects of water supply and energy availability were equivalent on the variation of ETa throughout most of the basin, except the upper reach and downstream Mekong Delta. In the upper reach, climate warming played a critical role in the ETa variability, while the warming effect was offset by reduced solar radiation in the Mekong Delta (an energy-limited region). For the entire basin, the available water resources showed an increasing trend due to intensified precipitation; however, in downstream areas, additional pressure on available water resources is exerted due to cropland expansion with enhanced agricultural water consumption. The results provide scientific basis for practices of integrated catchment management and water resources allocation.


2021 ◽  
Vol 13 (2) ◽  
pp. 312
Author(s):  
Xiongpeng Tang ◽  
Jianyun Zhang ◽  
Guoqing Wang ◽  
Gebdang Biangbalbe Ruben ◽  
Zhenxin Bao ◽  
...  

The demand for accurate long-term precipitation data is increasing, especially in the Lancang-Mekong River Basin (LMRB), where ground-based data are mostly unavailable and inaccessible in a timely manner. Remote sensing and reanalysis quantitative precipitation products provide unprecedented observations to support water-related research, but these products are inevitably subject to errors. In this study, we propose a novel error correction framework that combines products from various institutions. The NASA Modern-Era Retrospective Analysis for Research and Applications (AgMERRA), the Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), the Climate Hazards group InfraRed Precipitation with Stations (CHIRPS), the Multi-Source Weighted-Ensemble Precipitation Version 1.0 (MSWEP), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Records (PERSIANN) were used. Ground-based precipitation data from 1998 to 2007 were used to select precipitation products for correction, and the remaining 1979–1997 and 2008–2014 observe data were used for validation. The resulting precipitation products MSWEP-QM derived from quantile mapping (QM) and MSWEP-LS derived from linear scaling (LS) are evaluated by statistical indicators and hydrological simulation across the LMRB. Results show that the MSWEP-QM and MSWEP-LS can better capture major annual precipitation centers, have excellent simulation results, and reduce the mean BIAS and mean absolute BIAS at most gauges across the LMRB. The two corrected products presented in this study constitute improved climatological precipitation data sources, both time and space, outperforming the five raw gridded precipitation products. Among the two corrected products, in terms of mean BIAS, MSWEP-LS was slightly better than MSWEP-QM at grid-scale, point scale, and regional scale, and it also had better simulation results at all stations except Strung Treng. During the validation period, the average absolute value BIAS of MSWEP-LS and MSWEP-QM decreased by 3.51% and 3.4%, respectively. Therefore, we recommend that MSWEP-LS be used for water-related scientific research in the LMRB.


Sign in / Sign up

Export Citation Format

Share Document