scholarly journals Validation of SMAP L2 passive-only soil moisture products using <i>in situ</i> measurements collected in Twente, The Netherlands

Author(s):  
Rogier van der Velde ◽  
Andreas Colliander ◽  
Michiel Pezij ◽  
Harm-Jan F. Benninga ◽  
Rajat Bindlish ◽  
...  

Abstract. The Twente region in the east of the Netherlands has a network with twenty soil monitoring stations that has been utilized for validation of the Soil Moisture Active/Passive (SMAP) passive-only soil moisture products. Over the period from April 2015 until December 2018, seven stations covered by the SMAP reference pixels have fairly complete data records. Spatially distributed soil moisture simulations with the Dutch national hydrological model have been utilized for the development of upscaling functions to translate the spatial mean of point measurements to the domain of the SMAP reference pixels. The native and upscaled spatial soil moisture means have been adopted as in situ references to assess the performance of the SMAP i) Single Channel Algorithm at Horizontal Polarization (SCA-H), ii) Single Channel Algorithm at Vertical Polarization (SCA-V), and iii) Dual Channel Algorithm (DCA) soil moisture estimates. In the case of the Twente network it was found that the SCA-V soil moisture retrieved SMAP observations collected in the afternoon had the best agreement with the in situ references leading to an unbiased Root Mean Squared Error (uRMSE) of 0.059 m3 m−3. This is larger than the mission target accuracy of 0.04 m3 m−3, which can be attributed to large over- and underestimation errors (> 0.08 m3 m−3) in particular at the end of dry spells and during freezing, respectively. The strong vertical dielectric gradients associated with rapid soil freezing and wetting causes the disparity in soil depth characterized by SMAP and in situ that leads to the large mismatches. Once filtered for frozen conditions and antecedent rainfall the uRMSE improves to 0.043 m3 m−3.

2021 ◽  
Vol 25 (1) ◽  
pp. 473-495
Author(s):  
Rogier van der Velde ◽  
Andreas Colliander ◽  
Michiel Pezij ◽  
Harm-Jan F. Benninga ◽  
Rajat Bindlish ◽  
...  

Abstract. The Twente region in the east of the Netherlands has a network with 20 soil monitoring stations that has been utilized for validation of the Soil Moisture Active/Passive (SMAP) passive-only soil moisture products. Over the period from April 2015 until December 2018, seven stations covered by the SMAP reference pixels have fairly complete data records. Spatially distributed soil moisture simulations with the Dutch National Hydrological Model have been utilized for the development of upscaling functions to translate the spatial mean of point measurements to the domain of the SMAP reference pixels. The native and upscaled spatial soil moisture means computed using the in situ measurements have been adopted as references to assess the performance of the SMAP (i) Single Channel Algorithm at Horizontal Polarization (SCA-H), (ii) Single Channel Algorithm at Vertical Polarization (SCA-V), and (iii) Dual Channel Algorithm (DCA) soil moisture estimates. In the case of the Twente network it was found that the SCA-V SMAP soil moisture observations collected in the afternoon had the best agreement with the native spatial mean, leading to an unbiased root mean squared error (uRMSE) of 0.059 m3 m−3, whereas for the upscaled in situ references primarily larger biases were found. These error levels are larger than the mission's target accuracy of 0.04 m3 m−3, which can be attributed to large over- and under-estimation errors (>0.08 m3 m−3), in particular at the end of dry spells and during freezing, respectively. The strong vertical dielectric gradients associated with rapid soil freezing and wetting cause the disparity in soil depth characterized by SMAP and in situ that leads to the large mismatches. Once filtered for frozen conditions and antecedent rainfall, the uRMSE improves to 0.043 m3 m−3.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1174 ◽  
Author(s):  
Honglin Zhu ◽  
Tingxi Liu ◽  
Baolin Xue ◽  
Yinglan A. ◽  
Guoqiang Wang

Soil moisture distribution plays a significant role in soil erosion, evapotranspiration, and overland flow. Infiltration is a main component of the hydrological cycle, and simulations of soil moisture can improve infiltration process modeling. Different environmental factors affect soil moisture distribution in different soil layers. Soil moisture distribution is influenced mainly by soil properties (e.g., porosity) in the upper layer (10 cm), but by gravity-related factors (e.g., slope) in the deeper layer (50 cm). Richards’ equation is a widely used infiltration equation in hydrological models, but its homogeneous assumptions simplify the pattern of soil moisture distribution, leading to overestimates. Here, we present a modified Richards’ equation to predict soil moisture distribution in different layers along vertical infiltration. Two formulae considering different controlling factors were used to estimate soil moisture distribution at a given time and depth. Data for factors including slope, soil depth, porosity, and hydraulic conductivity were obtained from the literature and in situ measurements and used as prior information. Simulations were compared between the modified and the original Richards’ equations and with measurements taken at different times and depths. Comparisons with soil moisture data measured in situ indicated that the modified Richards’ equation still had limitations in terms of reproducing soil moisture in different slope positions and rainfall periods. However, compared with the original Richards’ equation, the modified equation estimated soil moisture with spatial diversity in the infiltration process more accurately. The equation may benefit from further solutions that consider various controlling factors in layers. Our results show that the proposed modified Richards’ equation provides a more effective approach to predict soil moisture in the vertical infiltration process.


2014 ◽  
Vol 567 ◽  
pp. 705-710
Author(s):  
Abdalhaleem A. Hassaballa ◽  
Abdul Nasir Matori ◽  
Helmi Z.M. Shafri

Soil moisture (MC) is considered as the most significant boundary conditions controlling most of the hydrological cycle’s processes especially over humid areas. However, MC is very critical parameter to measure because of its variability in both space and time. The fluctuation of MC along the soil depth in turn, makes it so difficult to assess from optical satellite techniques. The study aims to produce a rectified satellite’s surface temperature (Ts) in order to enhance the spatial estimation of MC. The study also aims to produce MC estimates from three variable depths of the soil using optical images from NOAA 17 in order to examine the potential of satellite techniques in assessing the MC along the soil depths. The universal triangle (UT) algorithm was used for MC assessment based on Ts, vegetation Indices (VI) and field measurements of MC; which were conducted at variable depths. The study area was divided into three classes according to the nature of surface cover. The resultant MC extracted from the UT method with rectified Ts, produced accuracies of MC ranging from 0.65 to 0.89 when validated with in-situ measured MC at depths 5cm and 10 cm respectively.


2020 ◽  
Author(s):  
Bonan Li ◽  
Stephen P. Good

Abstract. NASA's Soil Moisture Active-Passive (SMAP) mission characterizes global spatiotemporal patterns in surface soil moisture using dual L-band microwave retrievals of horizontal, TBh, and vertical, TBv, polarized microwave brightness temperatures through a modeled relationship between vegetation opacity and surface scattering albedo (i.e. tau-omega model). Although this model has been validated against in situ soil moisture measurements across sparse validations sites, there is lack of systematic characterization of where and why SMAP estimates deviate from the in situ observations. Here, soil moisture observations from the US Climate Reference Network are used within a mutual information framework to decompose the overall retrieval uncertainty from SMAPs Modified Dual Channel Algorithm (MDCA) into random uncertainty derived from raw data itself and model uncertainty derived from the model’s inherent structure. The results shown that, on average, 12 % of the uncertainty in SMAP soil moisture estimates is caused by the loss of information in the MDCA model itself while the remainder is induced by inadequacy of TBh and TBv observations. We find the fraction of algorithm induced uncertainty is negatively correlated (pearson r of −0.48) with correlations between in-situ observations and MDCA estimates. A decomposition of mutual information between TBh, TBv and MDCA soil moisture shows that on average 55 % of the mutual information is redundantly shared by TBh and TBv, while the information provided uniquely from both TBh and TBv is 15 %. The fraction of information redundantly provided by TBh and TBv was found to be tightly correlated (pearson r = −0.7) to how well the MDCA output correlated to in situ observations. Thus, MDCA overall quality improves as TBh and TBv provide more redundant information for the MDCA. This suggests the informational redundancy between these remotely sensed observations can be used as independent metric to assess the overall quality of algorithms using these data streams. This study provides a baseline approach that can also be applied to evaluate other remote sensing models and understand informational loss as satellite retrievals are translated to end user products.


2018 ◽  
Vol 10 (11) ◽  
pp. 1720 ◽  
Author(s):  
Brecht Martens ◽  
Richard de Jeu ◽  
Niko Verhoest ◽  
Hanneke Schuurmans ◽  
Jonne Kleijer ◽  
...  

The evaporation of water from land into the atmosphere is a key component of the hydrological cycle. Accurate estimates of this flux are essential for proper water management and irrigation scheduling. However, continuous and qualitative information on land evaporation is currently not available at the required spatio-temporal scales for agricultural applications and regional-scale water management. Here, we apply the Global Land Evaporation Amsterdam Model (GLEAM) at 100 m spatial resolution and daily time steps to provide estimates of land evaporation over The Netherlands, Flanders, and western Germany for the period 2013–2017. By making extensive use of microwave-based geophysical observations, we are able to provide data under all weather conditions. The soil moisture estimates from GLEAM at high resolution compare well with in situ measurements of surface soil moisture, resulting in a median temporal correlation coefficient of 0.76 across 29 sites. Estimates of terrestrial evaporation are also evaluated using in situ eddy-covariance measurements from five sites, and compared to estimates from the coarse-scale GLEAM v3.2b, land evaporation from the Satellite Application Facility on Land Surface Analysis (LSA-SAF), and reference grass evaporation based on Makkink’s equation. All datasets compare similarly with in situ measurements and differences in the temporal statistics are small, with correlation coefficients against in situ data ranging from 0.65 to 0.95, depending on the site. Evaporation estimates from GLEAM-HR are typically bounded by the high values of the Makkink evaporation and the low values from LSA-SAF. While GLEAM-HR and LSA-SAF show the highest spatial detail, their geographical patterns diverge strongly due to differences in model assumptions, model parameterizations, and forcing data. The separate consideration of rainfall interception loss by tall vegetation in GLEAM-HR is a key cause of this divergence: while LSA-SAF reports maximum annual evaporation volumes in the Green Heart of The Netherlands, an area dominated by shrubs and grasses, GLEAM-HR shows its maximum in the national parks of the Veluwe and Heuvelrug, both densely-forested regions where rainfall interception loss is a dominant process. The pioneering dataset presented here is unique in that it provides observational-based estimates at high resolution under all weather conditions, and represents a viable alternative to traditional visible and infrared models to retrieve evaporation at field scales.


Water SA ◽  
2021 ◽  
Vol 47 (1 January) ◽  
Author(s):  
L Myeni ◽  
ME Moeletsi ◽  
AD Clulow

This study was undertaken to derive textural and lumped site-specific calibration equations for Dirk Friedhelm Mercker (DFM) capacitance probes and evaluate the accuracy levels of the developed calibration equations for continuous soil moisture monitoring in three selected soil types. At each site, 9 probes (3 per plot) were installed in 2 m2 plots, for continuous soil moisture measurements at 5 different depths (viz. 10, 20, 30, 40 and 60 cm) under dry, moist and wet field conditions. Textural site-specific calibration equations were derived by grouping the same soil textural classes of each site regardless of soil depth, while lumped site-specific calibration equations were derived by grouping all datasets from each site, regardless of soil depth and textural classes. Sensor readings were plotted against gravimetrically measured volumetric soil moisture (θv) for different textural classes as a reference. The coefficient of determination (r2) was used to select the best fit of the regression function. The developed calibration equations were evaluated using an independent dataset. The results indicated that all developed textural and lumped site-specific calibration equations were linear functions, withr2 values ranging from 0.96 to 0.99. Relationships between the measured and estimated θv from calibration equations were reasonable at all sites, with r2 values greater than 0.91 and root mean square error (RMSE) values ranging from 0.010 to 0.020 m3∙m-3. The results also indicated that textural site-specific calibration equations (RMSE < 0.018 m3∙m-3) should be given preference over lumped site-specific calibrations (RMSE < 0.020 m3∙m-3) to attain more accurate θv measurements. The findings of this study suggest that once DFM capacitance probes are calibrated per site, they can be reliably used for accurate in-situ soil moisture measurements. The developed calibration equations can be applied with caution in other sites with similar soil types to attained reliable in-situ soil moisture measurements.


2020 ◽  
Author(s):  
Joost Buitink ◽  
Anne M. Swank ◽  
Martine van der Ploeg ◽  
Naomi E. Smith ◽  
Harm-Jan F. Benninga ◽  
...  

Abstract. The soil moisture status near the land surface is a key determinant of vegetation productivity. The critical soil moisture content determines the transition from an energy-limited to a water-limited evapotranspiration regime. This study quantifies the critical soil moisture content by comparison of in situ soil moisture profile measurements of the Raam and Twenthe networks in the Netherlands, with two satellite derived vegetation indices (NIRv and VOD) during the 2018 summer drought. The critical soil moisture content is obtained through a piece-wise linear correlation of the NIRv and VOD anomalies with soil moisture on different depths of the profile. This nonlinear relation reflects the observation that negative soil moisture anomalies develop weeks before the first reduction in vegetation indices. Furthermore, the inferred critical soil moisture content was found to increase with observation depth and this relationship is shown to be linear and distinctive per area, reflecting the tendency of roots to take up water from deeper layers when drought progresses. The relations of non-stressed towards water-stressed vegetation conditions on distinct depths are derived using Remote Sensing, enabling the parameterization of reduced evapotranspiration and its effect on GPP in models to study the impact of a drought on the carbon cycle.


2020 ◽  
Vol 24 (12) ◽  
pp. 6021-6031
Author(s):  
Joost Buitink ◽  
Anne M. Swank ◽  
Martine van der Ploeg ◽  
Naomi E. Smith ◽  
Harm-Jan F. Benninga ◽  
...  

Abstract. The soil moisture status near the land surface is a key determinant of vegetation productivity. The critical soil moisture content determines the transition from an energy-limited to a water-limited evapotranspiration regime. This study quantifies the critical soil moisture content by comparison of in situ soil moisture profile measurements of the Raam and Twente networks in the Netherlands, with two satellite-derived vegetation indices (near-infrared reflectance of terrestrial vegetation, NIRv, and vegetation optical depth, VOD) during the 2018 summer drought. The critical soil moisture content is obtained through a piece-wise linear correlation of the NIRv and VOD anomalies with soil moisture on different depths of the profile. This non-linear relation reflects the observation that negative soil moisture anomalies develop weeks before the first reduction in vegetation indices: 2–3 weeks in this case. Furthermore, the inferred critical soil moisture content was found to increase with observation depth, and this relationship is shown to be linear and distinctive per area, reflecting the tendency of roots to take up water from deeper layers when drought progresses. The relations of non-stressed towards water-stressed vegetation conditions on distinct depths are derived using remote sensing, enabling the parameterization of reduced evapotranspiration and its effect on gross primary productivity in models to study the impact of a drought on the carbon cycle.


2021 ◽  
Vol 25 (9) ◽  
pp. 5029-5045
Author(s):  
Bonan Li ◽  
Stephen P. Good

Abstract. The National Aeronautics and Space Administration (NASA) Soil Moisture Active-Passive (SMAP) mission characterizes global spatiotemporal patterns in surface soil moisture using dual L-band microwave retrievals of horizontal (TBh) and vertical (TBv) polarized microwave brightness temperatures through a modeled mechanistic relationship between vegetation opacity, surface scattering albedo, and soil effective temperature (Teff). Although this model has been validated against in situ soil moisture, there is a lack of systematic characterization of where and why SMAP estimates deviate from the in situ observations. Here, we assess how the information content of in situ soil moisture observations from the US Climate Reference Network contrasts with (1) the information contained within raw SMAP observations (i.e., “informational random uncertainty”) derived from TBh, TBv, and Teff themselves and with (2) the information contained in SMAP's dual-channel algorithm (DCA) soil moisture estimates (i.e., “informational model uncertainty”) derived from the model's inherent structure and parameterizations. The results show that, on average, 80 % of the information in the in situ soil moisture is unexplained by SMAP DCA soil moisture estimates. Loss of information in the DCA modeling process contributes 35 % of the unexplained information, while the remainder is induced by a lack of additional explanatory power within TBh, TBv, and Teff. Overall, retrieval quality of SMAP DCA soil moisture, denoted as the Pearson correlation coefficient between SMAP DCA soil moisture and in situ soil moisture, is negatively correlated with the informational uncertainties, with slight differences across different land covers. The informational model uncertainty (Pearson correlation of −0.59) was found to be more influential than the informational random uncertainty (Pearson correlation of −0.34), suggesting that the poor performance of SMAP DCA at some locations is driven by model parameterization and/or structure and not underlying satellite measurements of TBh and TBv. A decomposition of mutual information between TBh, TBv, and DCA soil moisture shows that on average 58 % of information provided by TBh and TBv to DCA estimates is redundant. The amount of information redundantly and synergistically provided by TBh and TBv was found to be closely related (Pearson correlations of 0.79 and −0.82, respectively) to the retrieval quality of SMAP DCA. TBh and TBv tend to contribute large redundant information to DCA estimates under surfaces or conditions where DCA makes better retrievals. This study provides a baseline approach that can also be applied to evaluate other remote sensing models and understand informational loss as satellite retrievals are translated to end-user products.


Sign in / Sign up

Export Citation Format

Share Document