scholarly journals Contrasting seasonal changes in total and intense precipitation in the European Alps from 1903 to 2010

2020 ◽  
Author(s):  
Martin Ménégoz ◽  
Evgenia Valla ◽  
Nicolas C. Jourdain ◽  
Juliette Blanchet ◽  
Julien Beaumet ◽  
...  

Abstract. Changes of precipitation over the European Alps are investigated with the regional climate model MAR applied with a 7-km resolution over the period 1903–2010 using the reanalysis ERA-20C as forcing. A comparison with several observational datasets demonstrates that the model is able to reproduce the climatology as well as both the inter-annual variability and the seasonal cycle of precipitation over the European Alps. The relatively high resolution allows to estimate precipitation at high elevations. The vertical gradient of precipitation simulated by MAR over the European Alps reaches 33 % km−1 (1.21 mm.day−1.km−1) in summer and 38 % km−1 (1.15 mm.day−1.km−1) in winter, on average over 1971–2008 and shows a large spatial variability. A significant (p-value 

2020 ◽  
Vol 24 (11) ◽  
pp. 5355-5377
Author(s):  
Martin Ménégoz ◽  
Evgenia Valla ◽  
Nicolas C. Jourdain ◽  
Juliette Blanchet ◽  
Julien Beaumet ◽  
...  

Abstract. Changes in precipitation over the European Alps are investigated with the regional climate model MAR (Modèle Atmosphérique Régional) applied with a 7 km resolution over the period 1903–2010 using the reanalysis ERA-20C as forcing. A comparison with several observational datasets demonstrates that the model is able to reproduce the climatology as well as both the interannual variability and the seasonal cycle of precipitation over the European Alps. The relatively high resolution allows us to estimate precipitation at high elevations. The vertical gradient of precipitation simulated by MAR over the European Alps reaches 33% km−1 (1.21 mm d−1 km−1) in summer and 38 % km−1 (1.15 mm d−1 km−1) in winter, on average, over 1971–2008 and shows a large spatial variability. A significant (p value < 0.05) increase in mean winter precipitation is simulated in the northwestern Alps over 1903–2010, with changes typically reaching 20 % to 40 % per century. This increase is mainly explained by a stronger simple daily intensity index (SDII) and is associated with less-frequent but longer wet spells. A general drying is found in summer over the same period, exceeding 20 % to 30 % per century in the western plains and 40 % to 50 % per century in the southern plains surrounding the Alps but remaining much smaller (<10 %) and not significant above 1500 m a.s.l. Below this level, the summer drying is explained by a reduction in the number of wet days, reaching 20 % per century over the northwestern part of the Alps and 30 % to 50 % per century in the southern part of the Alps. It is associated with shorter but more-frequent wet spells. The centennial trends are modulated over the last decades, with the drying occurring in the plains in winter also affecting high-altitude areas during this season and with a positive trend of autumn precipitation occurring only over the last decades all over the Alps. Maximum daily precipitation index (Rx1day) takes its highest values in autumn in both the western and the eastern parts of the southern Alps, locally reaching 50 to 70 mm d−1 on average over 1903–2010. Centennial maxima up to 250 to 300 mm d−1 are simulated in the southern Alps, in France and Italy, as well as in the Ticino valley in Switzerland. Over 1903–2010, seasonal Rx1day shows a general and significant increase at the annual timescale and also during the four seasons, reaching local values between 20 % and 40 % per century over large parts of the Alps and the Apennines. Trends of Rx1day are significant (p value < 0.05) only when considering long time series, typically 50 to 80 years depending on the area considered. Some of these trends are nonetheless significant when computed over 1970–2010, suggesting a recent acceleration of the increase in extreme precipitation, whereas earlier periods with strong precipitation also occurred, in particular during the 1950s and 1960s.


2015 ◽  
Vol 16 (4) ◽  
pp. 1857-1872 ◽  
Author(s):  
Alexandre B. Pieri ◽  
Jost von Hardenberg ◽  
Antonio Parodi ◽  
Antonello Provenzale

Abstract We explore the impact of different resolutions, convective closures, and microphysical parameterizations on the representation of precipitation statistics (climatology, seasonal cycle, and intense events) in 20-yr-long simulations over Europe with the regional climate Weather Research and Forecasting (WRF) Model. The simulations are forced in the period 1979–98, using as boundary conditions the ERA-Interim fields over the European region. Special attention is paid to the representation of precipitation in the Alpine area. We consider spatial resolutions ranging from 0.11° to 0.037°, allowing for an explicit representation of convection at the highest resolution. Our results show that while there is a good overall agreement between observed and modeled precipitation patterns, the model outputs display a positive precipitation bias, particularly in winter. The choice of the microphysics scheme is shown to significantly affect the statistics of intense events. High resolution and explicitly resolved convection help to considerably reduce precipitation biases in summer and the reproduction of precipitation statistics.


2021 ◽  
Author(s):  
Vasubandhu Misra ◽  
C. B. Jayasankar

Abstract This study analyzes a relatively high resolution (15km grid spacing), regional coupled ocean-atmosphere simulation configured over Central America. The simulation is forced with global atmospheric and oceanic reanalysis for a period of 25 years (1986-2010). The spatial resolution and the time period of the Regional Climate Model (RCM) simulation are both unprecedented for the region. The highlights of the RCM simulation include the verifiable seasonal cycle of mesoscale features like the low level jets, the mid-summer drought and the seasonal tropical cyclone activity both in the Pacific and in the Atlantic Oceans. Similarly, the seasonal cycle of the robust surface ocean currents in the eastern Pacific and the Costa Rica Dome is also well captured in the RCM simulation. The RCM simulation also resolves the seasonal cycle of the Panama-Colombia Gyre, the Gulf of Papagayo and the Gulf of Tehuantepec Gyre. In many instances we find the RCM improves upon the global reanalysis forcing the simulation, indicating the potential value of dynamic downscaling. Furthermore, the co-evolving components of the atmosphere and ocean in the RCM is an added benefit to the atmosphere only and ocean only global reanalysis forcing the simulation. However, the model displays significant biases that manifest in precipitation, precipitable water, SST and winds which could potentially be improved.


SOLA ◽  
2020 ◽  
Vol 16 (0) ◽  
pp. 132-139
Author(s):  
Sheau Tieh Ngai ◽  
Hidetaka Sasaki ◽  
Akihiko Murata ◽  
Masaya Nosaka ◽  
Jing Xiang Chung ◽  
...  

2019 ◽  
Vol 101 ◽  
pp. 03004
Author(s):  
Rohit Srivastava ◽  
Ruchita Shah

Global warming is an increase in average global temperature of the earth which lead to climate change. Heterogeneity in the earth-atmosphere system becomes difficult to capture at low resolution (1°x1°) by satellite. Such features may be captured by using high resolution model such as regional climate model (0.5°x 0.5°). This type of study is quite important for a monsoon dominated country like India where Indo-Gangetic Plains (IGP) faces highest heterogeneity due to its geographic location. Present study compares high resolution model features with satellite data over IGP for monsoon season during a normal rainfall year 2010 to understand the actual performance of model. Almost whole IGP simulates relative humidity (RH) with wide range (~50-100%), whereas satellite shows it with narrow range (~60-80%) during September, 2010. Thus model is able to pick the features which were missed by satellite. Hence further model simulation extends over India and adjoining oceanic regions which simulates data of southwest monsoon with high (~70-100%) RH, high (~0.4-0.7) cloud fraction (CF) and low (~80-200 W/m2) outgoing longwave radiation (OLR) over Arabian Sea during June, 2010. Such type of study can be useful to understand heterogeneity at regional scale with the help of high resolution model generated data.


2010 ◽  
Vol 23 (7) ◽  
pp. 1854-1873 ◽  
Author(s):  
E-S. Im ◽  
E. Coppola ◽  
F. Giorgi ◽  
X. Bi

Abstract A mosaic-type parameterization of subgrid-scale topography and land use (SubBATS) is applied for a high-resolution regional climate simulation over the Alpine region with a regional climate model (RegCM3). The model coarse-gridcell size in the control simulation is 15 km while the subgridcell size is 3 km. The parameterization requires disaggregation of atmospheric variables from the coarse grid to the subgrid and aggregation of surface fluxes from the subgrid to the coarse grid. Two 10-yr simulations (1983–92) are intercompared, one without (CONT) and one with (SUB) the subgrid scheme. The authors first validate the CONT simulation, showing that it produces good quality temperature and precipitation statistics, showing in particular a good performance compared to previous runs of this region. The subgrid scheme produces much finer detail of temperature and snow distribution following the topographic disaggregation. It also tends to form and melt snow more accurately in response to the heterogeneous characteristics of topography. In particular, validation against station observations shows that the SUB simulation improves the model simulation of the surface hydrologic cycle, in particular snow and runoff, especially at high-elevation sites. Finally, two experiments explore the model sensitivity to different subgrid disaggregation assumptions, namely, the temperature lapse rate and an empirical elevation-based disaggregation of precipitation.


Sign in / Sign up

Export Citation Format

Share Document