scholarly journals The effect of GCM biases on global runoff simulations of a land surface model

2017 ◽  
Vol 21 (9) ◽  
pp. 4379-4401 ◽  
Author(s):  
Lamprini V. Papadimitriou ◽  
Aristeidis G. Koutroulis ◽  
Manolis G. Grillakis ◽  
Ioannis K. Tsanis

Abstract. Global climate model (GCM) outputs feature systematic biases that render them unsuitable for direct use by impact models, especially for hydrological studies. To deal with this issue, many bias correction techniques have been developed to adjust the modelled variables against observations, focusing mainly on precipitation and temperature. However, most state-of-the-art hydrological models require more forcing variables, in addition to precipitation and temperature, such as radiation, humidity, air pressure, and wind speed. The biases in these additional variables can hinder hydrological simulations, but the effect of the bias of each variable is unexplored. Here we examine the effect of GCM biases on historical runoff simulations for each forcing variable individually, using the JULES land surface model set up at the global scale. Based on the quantified effect, we assess which variables should be included in bias correction procedures. To this end, a partial correction bias assessment experiment is conducted, to test the effect of the biases of six climate variables from a set of three GCMs. The effect of the bias of each climate variable individually is quantified by comparing the changes in simulated runoff that correspond to the bias of each tested variable. A methodology for the classification of the effect of biases in four effect categories (ECs), based on the magnitude and sensitivity of runoff changes, is developed and applied. Our results show that, while globally the largest changes in modelled runoff are caused by precipitation and temperature biases, there are regions where runoff is substantially affected by and/or more sensitive to radiation and humidity. Global maps of bias ECs reveal the regions mostly affected by the bias of each variable. Based on our findings, for global-scale applications, bias correction of radiation and humidity, in addition to that of precipitation and temperature, is advised. Finer spatial-scale information is also provided, to suggest bias correction of variables beyond precipitation and temperature for regional studies.

2017 ◽  
Author(s):  
Lamprini V. Papadimitriou ◽  
Aristeidis G. Koutroulis ◽  
Manolis G. Grillakis ◽  
Ioannis K. Tsanis

Abstract. Global Climate Model (GCM) outputs feature systematic biases that render them unsuitable for direct use by impact models, especially for hydrological studies. To deal with this issue many bias correction techniques have been developed to adjust the modelled variables against observations, focusing mainly on precipitation and temperature. However most state-of-art hydrological models require more forcing variables, additionally to precipitation and temperature, such as radiation, humidity, air pressure and wind speed. The biases in these additional variables can hinder hydrological simulations, but the effect of the bias of each variable is unexplored. Here we examine the effect of GCM biases on historical runoff simulations for each forcing variable individually, using the land surface model JULES set up at the global scale. Based on the quantified effect, we assess which variables should be included in bias correction procedures. To this end, a partial correction bias assessment experiment is conducted, to test the effect of the biases of six climate variables from a set of three GCMs. The effect of the bias of each climate variable individually is quantified by comparing the changes in simulated runoff that correspond to the bias of each tested variable. A methodology for the classification of the effect of biases in four Effect Categories (ECs), based on the magnitude and sensitivity of runoff changes, is developed and applied. Our results show that, while globally the largest changes in modelled runoff are caused by precipitation and temperature biases, there are regions where runoff is substantially affected by and/or more sensitive to radiation and humidity. Global maps of bias ECs reveal the regions mostly affected by the bias of each variable. Based on our findings, for global scale applications, bias correction of radiation and humidity, in addition to that of precipitation and temperature, is advised. Finer spatial scale information is also provided, to suggest bias correction of variables beyond precipitation and temperature for regional studies.


Author(s):  
O. N. Nasonova ◽  
Y. M. Gusev ◽  
E. M. Volodin ◽  
E. E. Kovalev

Abstract. The objective of the present study is application of the land surface model SWAP to project climate change impact on northern Russian river runoff up to 2100 using meteorological projections from the atmosphere–ocean global climate model INMCM4.0. The study was performed for the Northern Dvina River and the Kolyma River characterized by different climatic conditions. The ability of both models to reproduce the observed river runoff was investigated. To apply SWAP for hydrological projections, the robustness of the model was evaluated. The river runoff projections up to 2100 were calculated for two greenhouse gas emission scenarios: RCP8.5 and RCP4.5 prepared for the phase five of the Coupled Model Intercomparison Project (CMIP5). For each scenario, several runoff projections were obtained using different models (INMCM4.0 and SWAP) and different post-processing techniques for correcting biases in meteorological forcing data. Differences among the runoff projections obtained for the same emission scenario and the same period illustrate uncertainties resulted from application of different models and bias-correcting techniques.


2021 ◽  
Author(s):  
Andrew Newman ◽  
Yifan Cheng ◽  
Keith Musselman ◽  
Anthony Craig ◽  
Sean Swenson ◽  
...  

<p>The Arctic has warmed during the recent observational record and is projected to keep warming through the end of the 21<sup>st</sup> century in nearly every future emissions scenario and global climate model. This will drive continued thawing of permafrost-rich soils, alter the partitioning of rain versus snow events, and greatly affectthe water cycle and land-surface processes across the Arctic. However, previous analyses of these impacts using dynamical models have relied on global climate model output or relatively coarse regional climate model simulations. In the coarse simulations, projections of changes to the water cycle and land-surface processes in areas of complex orography and high land-surface heterogeneity, which are characteristic of many regions in the Arctic, may thus be limited. </p><p>Here, we discuss recent work examining high-resolution regional climate simulations over Alaska and NW Canada. Completed and upcoming simulations have been and will be run at a 4 km grid spacing, which is sufficient to resolve orography across this region’s mountain ranges. The initial simulation results are very encouraging and show the regional climate model yields a realistic representation of the seasonal and spatial evolution of precipitation, temperature, and snowpack compared to previous studies across Alaska and other Arctic regions. A paired future climate simulation uses the Pseudo-Global Warming (PGW) approach, where the end of century ensemble mean monthly climate perturbations (CMIP5 RCP8.5) are used to incorporate the thermodynamic effects of future warming into the present-day climate as represented by ERA-Interim reanalysis data. Changes in major components of the hydroclimate (e.g. precipitation, temperature, snowfall, snowpack) are projected to sometimes be significant in this future scenario. For example, the seasonal snow cover in some regions is projected to mostly disappear. However, there are also projected increases in snowpack in historically very cold areas (e.g. high elevations) that are able to stay cold enough in the future to support snowfall and snowpack.</p><p>Finally, we will present a new effort to couple an advanced land-surface model, the Community Terrestrial Systems Model (CTSM), within the Regional Arctic Systems Model (RASM) in an effort to better represent complex land-surface and subsurface (e.g. permafrost, streamflow availability timing and temperatures) processes for climate change impact studies. CTSM is a complex physically based land-surface model that is able to represent multiple snow layers, a complex canopy, and multiple soil layers including organic matter and frozen soils, which enables us to explicitly represent spatial variability in the regional hydroclimate and land states (e.g. permafrost) at relatively high spatial resolutions relative to other simulations (4 km land and atmosphere grids).  Successful coupling of CTSM within RASM has been completed and we will discuss some preliminary land-atmosphere coupled test results.</p>


2008 ◽  
Vol 47 (4) ◽  
pp. 1038-1060 ◽  
Author(s):  
K. W. Oleson ◽  
G. B. Bonan ◽  
J. Feddema ◽  
M. Vertenstein ◽  
C. S. B. Grimmond

Abstract Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1331 ◽  
Author(s):  
Aristeidis Koutroulis ◽  
Lamprini Papadimitriou ◽  
Manolis Grillakis ◽  
Ioannis Tsanis ◽  
Klaus Wyser ◽  
...  

The simulation of hydrological impacts in a changing climate remains one of the main challenges of the earth system sciences. Impact assessments can be, in many cases, laborious processes leading to inevitable methodological compromises that drastically affect the robustness of the conclusions. In this study we examine the implications of different CMIP5-based regional and global climate model ensembles for projections of the hydrological impacts of climate change. We compare results from three different assessments of hydrological impacts under high-end climate change (RCP8.5) across Europe, and we focus on how methodological differences affect the projections. We assess, as systematically as possible, the differences in runoff projections as simulated by a land surface model driven by three different sets of climate projections over the European continent at global warming of 1.5 °C, 2 °C and 4 °C relative to pre-industrial levels, according to the RCP8.5 concentration scenario. We find that these methodological differences lead to considerably different outputs for a number of indicators used to express different aspects of runoff. We further use a number of new global climate model experiments, with an emphasis on high resolution, to test the assumption that many of the uncertainties in regional climate and hydrological changes are driven predominantly by the prescribed sea surface temperatures (SSTs) and sea-ice concentrations (SICs) and we find that results are more sensitive to the choice of the atmosphere model compared to the driving SSTs. Finally, we combine all sources of information to identify robust patterns of hydrological changes across the European continent.


2017 ◽  
Vol 10 (1) ◽  
pp. 223-238 ◽  
Author(s):  
Julie Berckmans ◽  
Olivier Giot ◽  
Rozemien De Troch ◽  
Rafiq Hamdi ◽  
Reinhart Ceulemans ◽  
...  

Abstract. Dynamical downscaling in a continuous approach using initial and boundary conditions from a reanalysis or a global climate model is a common method for simulating the regional climate. The simulation potential can be improved by applying an alternative approach of reinitialising the atmosphere, combined with either a daily reinitialised or a continuous land surface. We evaluated the dependence of the simulation potential on the running mode of the regional climate model ALARO coupled to the land surface model Météo-France SURFace EXternalisée (SURFEX), and driven by the ERA-Interim reanalysis. Three types of downscaling simulations were carried out for a 10-year period from 1991 to 2000, over a western European domain at 20 km horizontal resolution: (1) a continuous simulation of both the atmosphere and the land surface, (2) a simulation with daily reinitialisations for both the atmosphere and the land surface and (3) a simulation with daily reinitialisations of the atmosphere while the land surface is kept continuous. The results showed that the daily reinitialisation of the atmosphere improved the simulation of the 2 m temperature for all seasons. It revealed a neutral impact on the daily precipitation totals during winter, but the results were improved for the summer when the land surface was kept continuous. The behaviour of the three model configurations varied among different climatic regimes. Their seasonal cycle for the 2 m temperature and daily precipitation totals was very similar for a Mediterranean climate, but more variable for temperate and continental climate regimes. Commonly, the summer climate is characterised by strong interactions between the atmosphere and the land surface. The results for summer demonstrated that the use of a daily reinitialised atmosphere improved the representation of the partitioning of the surface energy fluxes. Therefore, we recommend using the alternative approach of the daily reinitialisation of the atmosphere for the simulation of the regional climate.


2017 ◽  
Vol 30 (3) ◽  
pp. 1159-1176 ◽  
Author(s):  
J. Winckler ◽  
C. H. Reick ◽  
J. Pongratz

Abstract Land-cover change (LCC) happens locally. However, in almost all simulation studies assessing biogeophysical climate effects of LCC, local effects (due to alterations in a model grid box) are mingled with nonlocal effects (due to changes in wide-ranging climate circulation). This study presents a method to robustly identify local effects by changing land surface properties in selected “LCC boxes” (where local plus nonlocal effects are present), while leaving others unchanged (where only nonlocal effects are present). While this study focuses on the climate effects of LCC, the method presented here is applicable to any land surface process that is acting locally but is capable of influencing wide-ranging climate when applied on a larger scale. Concerning LCC, the method is more widely applicable than methods used in earlier studies. The study illustrates the possibility of validating simulated local effects by comparison to observations on a global scale and contrasts the underlying mechanisms of local and nonlocal effects. In the MPI-ESM, the change in background climate induced by extensive deforestation is not strong enough to influence the local effects substantially, at least as long as sea surface temperatures are not affected. Accordingly, the local effects within a grid box are largely independent of the number of LCC boxes in the isolation approach.


Sign in / Sign up

Export Citation Format

Share Document