scholarly journals Modelling long-term changes in stream water and soil chemistry in catchments with contrasting vulnerability to acidification (Lysina and Pluhuv Bor, Czech Republic)

2003 ◽  
Vol 7 (4) ◽  
pp. 525-539 ◽  
Author(s):  
J. Hruška ◽  
P. Krám

Abstract. In two Czech catchments covered by Norway spruce forests, the MAGIC model was used to simulate annual stream water and soil chemistry for the period 1851–2030. These two sites represent geochemical end-members of ecosystem sensitivity to acidification (acid-sensitive granitic Lysina catchment vs. acid-resistant serpentinitic Pluhuv Bor catchment). Although the total deposition of sulphur to the catchments declined by 75% between 1990 and 2002, the recovery of stream water pH was relatively small over this period. At Lysina, the annual discharge-weighted mean pH of stream water increased only from 3.92 to 4.01, although SO4 concentration declined very sharply from 570 μeq L–1 in 1990 to 150 μeq L–1 in 2002. Stream water buffering was caused mainly by dissociation of organic acids. At Pluhuv Bor, the annual mean pH varied inversely with the annual discharge. Stream water concentrations of SO4 declined dramatically at Pluhuv Bor, from 1040 μeq L–1 in 1992 to 220 μeq L–1 in 2002. Using atmospheric deposition as specified in the Gothenburg Protocol, the model predicts that, at Lysina, stream water pH will increase to 4.3 and soil base saturation will increase to 6.0% by 2030 (from 5.6% in 2002); corresponding pre-industrial stream water pH was simulated to be 5.5 and soil base saturation to be 25%. At Pluhuv Bor, the pre-industrial pH was estimated to be 7.2 and the corresponding base saturation was 94%. Large anthropogenic acidification in the 20th century caused only a small decline in pH (to 6.9) and base saturation (to 88%). Simulations in accordance with the Gothenburg Protocol predict that the pH should increase by 0.2 pH units and the base saturation by 1% by 2030. Under this protocol, critical loads of atmospheric deposition for SO4 and NO3 will not be exceeded at Pluhuv Bor but will be exceeded at Lysina. Keywords: MAGIC model, catchment, critical loads, Gothenburg Protocol, soil and water acidification, granite, serpentinite, Czech Republic

2008 ◽  
Vol 12 (2) ◽  
pp. 479-490 ◽  
Author(s):  
D. W. Hardekopf ◽  
J. Horecký ◽  
J. Kopáček ◽  
E. Stuchlík

Abstract. Two branches forming the headwaters of a stream in the Czech Republic were studied. Both streams have similar catchment characteristics and historical deposition; however one is rain-fed and strongly affected by acid atmospheric deposition, the other spring-fed and only moderately acidified. The MAGIC model was used to reconstruct past stream water and soil chemistry of the rain-fed branch, and predict future recovery up to 2050 under current proposed emissions levels. A future increase in air temperature calculated by a regional climate model was then used to derive climate-related scenarios to test possible factors affecting chemical recovery up to 2100. Macroinvertebrates were sampled from both branches, and differences in stream chemistry were reflected in the community structures. According to modelled forecasts, recovery of the rain-fed branch will be gradual and limited, and continued high levels of sulphate release from the soils will continue to dominate stream water chemistry, while scenarios related to a predicted increase in temperature will have little impact. The likelihood of colonization of species from the spring-fed branch was evaluated considering the predicted extent of chemical recovery. The results suggest that the possibility of colonization of species from the spring-fed branch to the rain-fed will be limited to only the acid-tolerant stonefly, caddisfly and dipteran taxa in the modelled period.


2007 ◽  
Vol 4 (5) ◽  
pp. 3285-3315
Author(s):  
D. W. Hardekopf ◽  
J. Horecký ◽  
J. Kopáček ◽  
E. Stuchlík

Abstract. Two branches forming the headwaters of a stream in the Czech Republic were studied. Both streams have similar catchment characteristics and historical deposition; however one is rain-fed and strongly affected by acid atmospheric deposition, the other spring-fed and only moderately acidified. The MAGIC model was used to reconstruct past stream water and soil chemistry of the rain-fed branch, and predict future recovery up to 2050 under current proposed emissions levels. A future increase in air temperature calculated by a regional climate model was then used to derive climate-related scenarios to test possible factors affecting chemical recovery up to 2100. Macroinvertebrates were sampled from both branches, and differences in stream chemistry were reflected in the community structures. According to modelled forecasts, recovery of the rain-fed branch will be gradual and limited, and continued high levels of sulphate release from the soils will continue to dominate stream water chemistry, while scenarios related to a predicted increase temperature will have little impact. The likelihood of colonization of species from the spring-fed branch was evaluated considering the predicted extent of chemical recovery. The results suggest that the possibility of colonization of species from the spring-fed branch to the rain-fed will be limited to only the acid-tolerant stonefly, caddisfly and dipteran taxa in the modelled period.


1998 ◽  
Vol 2 (4) ◽  
pp. 497-507 ◽  
Author(s):  
R. C. Helliwell ◽  
R. C. Ferrier ◽  
A. Jenkins

Abstract. A two-layer application of the catchment-based soil and surface water acidification model, MAGIC, was applied to 21 sites in the UK Acid Waters Monitoring Network (AWAMN), and the results were compared with those from a one-layer application of the model. The two-layer model represented typical soil properties more accurately by segregating the organic and mineral horizons into two separate soil compartments. Reductions in sulphur (S) emissions associated with the Second S Protocol and different forestry (land use) scenarios were modelled, and their effects on soil acidification evaluated. Soil acidification was assessed in terms of base saturation and critical loads for the molar ratio of base cations (CA2+ + MG 2+ + K+) to aluminium (Al) in soil solution. The results of the two-layer application indicate that base saturation of the organic compartment was very responsive to changes in land use and deposition compared with the mineral soil. With the two- layer model, the organic soil compartment was particularly sensitive to acid deposition, which resulted in the critical load being predicted to be exceeded at eight sites in 1997 and two sites in 2010. These results indicate that further reductions in S deposition are necessary to raise the base cation (BC):Al ratio above the threshold which is harmful to tree roots. At forested sites BC:Al ratios were generally well below the threshold designated for soil critical loads in Europe and forecasts indicate that forest replanting can adversely affect the acid status of sensitive term objectives of protecting and sustaining soil and water quality. Policy formulation must seek to protect the most sensitive environmental receptor, in this case organic soils. It is clear, therefore, that simply securing protection of surface waters, via the critical loads approach, may not ensure adequate protection of low base status organic soils from the effects of acidification.


Author(s):  
NEIL FJ OTT ◽  
Shaun A. Watmough

Acidic deposition depleted soil base cation pools throughout central Ontario, particularly during the second half of the twentieth century. While sulphur (S) and nitrogen (N) deposition have declined in recent decades, forest harvesting may continue to remove base cations from soils, highlighting the need for reliable soil chemistry forecasts. This study investigated whether differences in soil chemistry among forest stands dominated by different tree species affected predictions using a dynamic biogeochemical model (VSD). Soil base saturation was modelled from 1850–2100 in stands dominated by balsam fir (<i>Abies balsamea</i> (L.) Mill.), eastern hemlock (<i>Tsuga canadensis</i> (L.) Carr.), white pine (<i>Pinus strobus</i> L.), sugar maple (<i>Acer saccharum</i> Marsh.), or yellow birch (<i>Betula alleghaniensis</i> Britt.). Three scenarios that manipulated future atmospheric S and N deposition and forest harvesting (2020–2100) were applied. When future atmospheric S and N deposition remained at 2020 levels and harvesting continued, base saturation increased marginally (2.0–4.5%) in all plots. Further increases in base saturation were minor (~1%) by 2100 when deposition reductions were implemented. When future forest harvesting was excluded, soil base saturation increased 3.4–8.5% from 2020–2100. These results suggest that tree species composition has minimal influence on modelled soil chemistry forecasts in response to changes in acidic deposition, and such models can be broadly applied for regional predictions.


2001 ◽  
Vol 32 (3) ◽  
pp. 249-264 ◽  
Author(s):  
Pavel Krám ◽  
Kevin Bishop ◽  
Filip Moldan

The geochemical model MAGIC (5.01) was applied to the Berg – Pipbäcken Nedre catchment in southwestern Sweden for the period 1846-2020. The major objective was to reconstruct historical acidification trends and predict the surface water and soil response to declining atmospheric deposition in the future based on the Gothenburg Protocol signed in 1999. Another task was to test the usefulness of Sweden's long-term small catchment monitoring program for a validation of the long-term acidification model. Berg has been one of fifteen catchments monitored very intensively by the Swedish Environmental Protection Agency during 1986-1993 and less intensively later by the Swedish University of Agricultural Sciences Department of Environmental Assessment. Anthropogenic atmospheric deposition was the dominant factor causing a decline of streamwater pH and especially soil base saturation. A scenario of future atmospheric deposition based on the emission reductions of S and N compounds agreed under the 1999 Gothenburg Protocol to the UNECE CLRTAP was modeled. This scenario stopped further acidification of soils, but recovery of streamwater pH and soil base saturation was slow and limited. Without further reductions from the deposition levels in 1995-1997, soil acidification would continue.


2003 ◽  
Vol 33 (8) ◽  
pp. 1544-1556 ◽  
Author(s):  
Shaun A Watmough ◽  
Peter J Dillon

We calculated critical loads of acidity (S and S + N separately) for seven forested catchments in south-central Ontario, using a critical threshold designed to maintain the Ca/Al molar ratio above 1.0 or the base cation (BC; Ca + Mg + K) to Al molar ratio above 10 in soil solution. Critical loads are ~10–50% lower using the BC/Al ratio compared with the Ca/Al ratio, and harvesting greatly increases forest sensitivity to acid deposition. If forests are harvested, critical load calculations indicate that further reductions in S and N bulk deposition are required to maintain the BC/Al ratio in soil solution above 10, but reductions in S deposition are only mandatory for three of the seven catchments. However, S export exceeds inputs in bulk deposition by 40–100%. Our study indicates that setting the critical threshold of BC/Al at 10 may not maintain soil base saturation above 20%, and that N export is unpredictable at current deposition levels. We calculate that SO4 leaching (and therefore deposition) must be reduced by between 10 and 74% to maintain healthy, productive forests in catchments that are harvested. More reliable estimates of base cation removals during harvest, minimum Ca leaching losses from soils that can occur without affecting forest productivity, and critical limits for soil base saturation are needed to improve these critical load estimates.


2007 ◽  
Vol 298 (1-2) ◽  
pp. 69-79 ◽  
Author(s):  
Anika K. Richter ◽  
Lorenz Walthert ◽  
Emmanuel Frossard ◽  
Ivano Brunner

2003 ◽  
Vol 7 (4) ◽  
pp. 456-466 ◽  
Author(s):  
R. C. Helliwell ◽  
A. Jenkins ◽  
R. C. Ferrier ◽  
B. J. Cosby

Abstract. Abstract: The MAGIC (Model of Acidification of Groundwaters in Catchments) model has been calibrated to three acid sensitive regions in the UK: Galloway, the South Pennines and Wales. These calibrations use the best available data for surface water, soil and deposition, from several UK data bases and regional sampling programmes. The model is capable of reproducing observed base cation and acid anion concentrations as reflected by a close match between observed and simulated acid neutralising capacity (ANC). Predictions to 2016 under currently agreed emission reductions, the Gothenburg Protocol, show that ANC greater than zero will be achieved at 100%, 86% and 100% of sites in Galloway, the Pennines and Wales, respectively. This indicates the potential for biological recovery and a return to ‘good status’ although chemical conditions remain some way from simulated pre-acidification conditions. In the longer term, beyond 2036 (20 years after compliance with the Gothenburg protocol), the model indicates that increased N leakage to surface waters may cause deterioration in the chemical status. Keywords: recovery, acidification, modelling, upland UK, ecology


2010 ◽  
Vol 174 (3) ◽  
pp. 408-419 ◽  
Author(s):  
Anika K. Richter ◽  
Yasuhiro Hirano ◽  
Jörg Luster ◽  
Emmanuel Frossard ◽  
Ivano Brunner

Sign in / Sign up

Export Citation Format

Share Document