Do critical load models adequately protect forests? A case study in south-central Ontario

2003 ◽  
Vol 33 (8) ◽  
pp. 1544-1556 ◽  
Author(s):  
Shaun A Watmough ◽  
Peter J Dillon

We calculated critical loads of acidity (S and S + N separately) for seven forested catchments in south-central Ontario, using a critical threshold designed to maintain the Ca/Al molar ratio above 1.0 or the base cation (BC; Ca + Mg + K) to Al molar ratio above 10 in soil solution. Critical loads are ~10–50% lower using the BC/Al ratio compared with the Ca/Al ratio, and harvesting greatly increases forest sensitivity to acid deposition. If forests are harvested, critical load calculations indicate that further reductions in S and N bulk deposition are required to maintain the BC/Al ratio in soil solution above 10, but reductions in S deposition are only mandatory for three of the seven catchments. However, S export exceeds inputs in bulk deposition by 40–100%. Our study indicates that setting the critical threshold of BC/Al at 10 may not maintain soil base saturation above 20%, and that N export is unpredictable at current deposition levels. We calculate that SO4 leaching (and therefore deposition) must be reduced by between 10 and 74% to maintain healthy, productive forests in catchments that are harvested. More reliable estimates of base cation removals during harvest, minimum Ca leaching losses from soils that can occur without affecting forest productivity, and critical limits for soil base saturation are needed to improve these critical load estimates.

2018 ◽  
Author(s):  
Paul A. Makar ◽  
Ayodeji Akingunola ◽  
Julian Aherne ◽  
Amanda S. Cole ◽  
Yayne-abeba Aklilu ◽  
...  

Abstract. Estimates of potential harmful effects to ecosystems in the Canadian provinces of Alberta and Saskatchewan due to acidifying deposition were calculated, using a one year simulation of a high resolution implementation of the Global Environmental Multiscale – Modelling Air-quality and Chemistry (GEM-MACH) model, and estimates of aquatic and terrestrial ecosystem critical loads. The model simulation was evaluated against two different sources of deposition data; total deposition in precipitation and total deposition to snowpack in the vicinity of the Athabasca oil sands. The model captured much of the variability of observed ions in wet deposition in precipitation (observed versus model sulphur, nitrogen and base cation R2 values of 0.90, 0.76 and 0.72, respectively), while being biased high for sulphur deposition, and low for nitrogen and base cations (slopes 2.2, 0.89 and 0.40, respectively). Aircraft-observation-based estimates of fugitive dust emissions, shown to be a factor of ten higher than reported values (Zhang et al., 2017), were used to estimate the impact of increased levels of fugitive dust on model results. Model comparisons to open snowpack observations were shown to be biased high, but in reasonable agreement for sulphur deposition when observations were corrected to account for throughfall in needleleaf forests. The model-observation relationships for precipitation deposition data, along with the expected effects of increased (unreported) base cation emissions, were used to provide a simple observation-based correction to model deposition fields. Base cation deposition was estimated using published observations of base cation fractions in surface collected particles (Wang et al., 2015). Both original and observation-corrected model estimates of sulphur, nitrogen and base cation deposition were used in conjunction with critical load data created using the NEG-ECP (2001) and CLRTAP (2004, 2016, 2017) protocols for critical loads, using variations on the Simple Mass Balance model for forest and terrestrial ecosystems, and the Steady State Water Chemistry and the First-order Acidity Balance models for aquatic ecosystems. Potential ecosystem damage at 2013/14 emissions and deposition levels was predicted for regions within each of the ecosystem critical load datasets examined here. The spatial extent of the regions in exceedance of critical loads varied between 1 × 104 and 3.3 × 105 km2, for the more conservative observation-corrected estimates of deposition, with the variation dependant on the ecosystem and critical load protocol. The larger estimates (for aquatic ecosystems) represent a substantial fraction of the area of the provinces examined. Base cation deposition was shown to have a neutralizing effect on acidifying deposition, and the use of the aircraft and precipitation observation-based corrections to base cation deposition resulted in reasonable agreement with snowpack data collected in the oil sands area. However, critical load exceedances calculated using both observations and observation-corrected deposition suggest that the neutralization effect is limited in spatial extent, decreasing rapidly with distance from emissions sources, due to the rapid deposition of emitted primary particles dust particles as a function of their size.


2003 ◽  
Vol 7 (4) ◽  
pp. 525-539 ◽  
Author(s):  
J. Hruška ◽  
P. Krám

Abstract. In two Czech catchments covered by Norway spruce forests, the MAGIC model was used to simulate annual stream water and soil chemistry for the period 1851–2030. These two sites represent geochemical end-members of ecosystem sensitivity to acidification (acid-sensitive granitic Lysina catchment vs. acid-resistant serpentinitic Pluhuv Bor catchment). Although the total deposition of sulphur to the catchments declined by 75% between 1990 and 2002, the recovery of stream water pH was relatively small over this period. At Lysina, the annual discharge-weighted mean pH of stream water increased only from 3.92 to 4.01, although SO4 concentration declined very sharply from 570 μeq L–1 in 1990 to 150 μeq L–1 in 2002. Stream water buffering was caused mainly by dissociation of organic acids. At Pluhuv Bor, the annual mean pH varied inversely with the annual discharge. Stream water concentrations of SO4 declined dramatically at Pluhuv Bor, from 1040 μeq L–1 in 1992 to 220 μeq L–1 in 2002. Using atmospheric deposition as specified in the Gothenburg Protocol, the model predicts that, at Lysina, stream water pH will increase to 4.3 and soil base saturation will increase to 6.0% by 2030 (from 5.6% in 2002); corresponding pre-industrial stream water pH was simulated to be 5.5 and soil base saturation to be 25%. At Pluhuv Bor, the pre-industrial pH was estimated to be 7.2 and the corresponding base saturation was 94%. Large anthropogenic acidification in the 20th century caused only a small decline in pH (to 6.9) and base saturation (to 88%). Simulations in accordance with the Gothenburg Protocol predict that the pH should increase by 0.2 pH units and the base saturation by 1% by 2030. Under this protocol, critical loads of atmospheric deposition for SO4 and NO3 will not be exceeded at Pluhuv Bor but will be exceeded at Lysina. Keywords: MAGIC model, catchment, critical loads, Gothenburg Protocol, soil and water acidification, granite, serpentinite, Czech Republic


Soil Research ◽  
2001 ◽  
Vol 39 (5) ◽  
pp. 1003 ◽  
Author(s):  
M. L. Adams ◽  
M. R. Davis ◽  
K. J. Powell

The impact of land use change from grassland to conifer forest on the aluminium (Al) concentrations in soils and soil solutions was examined. Soils from grassland were compared with those from adjoining 15–19-year old forest stands at 3 contrasting pairs of sites in South Island, New Zealand. The site pairs were on a terrace [Pinus nigra/P. ponderosa, and grassland (CP)], and a hill slope [Pseudotsuga menziesii and grassland (CF)] in the Craigieburn range, Canterbury, and a hill slope in the Lammerlaw Range, Otago [P. radiata and grassland (LP)]. The sites had never been cultivated or fertilised, and for each pair the forest and grassland were similar in terms of soil and topography. The 1 M KCl exchangeable and 0.02 M CaCl 2 extractable Al levels at 0–10 cm were higher in forest than in grassland topsoil at CP and LP (P < 0.01). In soil solutions there was a trend for both ‘reactive Al’ and Al bound in labile organic complexes to be higher in forest soil at all sites, but site-pair differences were only significant at LP, and only for ‘reactive Al’. The increase in ‘reactive Al’ at this site was linked to the low pH and low base saturation. The ratios of exchangeable and soil solution Ca 2+ and Mg 2+ to ‘reactive Al’ were substantially lower in forest than grassland soils at all sites. Aluminium complexation capacity (Al-CC) values at all sites were higher in forest soil solutions than in grassland soil solutions. For the grassland and forest sites at LP, the Al-CC correlated strongly with the amount of soluble fulvic and humic matter present, as estimated from soil solution UV absorbance at 250 nm. In soils with the lowest percentage base saturation and buffering capacity (LP), afforestation of pastoral grassland with Pinus radiata significantly reduced soil pH and base cation levels, while increasing both soil and soil solution Al concentrations. Under such conditions (base saturation <20%), the increase in ‘reactive Al’ concentrations in soil solutions under fast growing conifer tree species may be sufficient to affect Mg uptake.


2003 ◽  
Vol 60 (9) ◽  
pp. 1095-1103 ◽  
Author(s):  
S A Watmough ◽  
J Aherne ◽  
P J Dillon

The potential impact of harvesting on lake chemistry was assessed for ~1300 lakes in south-central Ontario using a critical loads approach based on the steady-state water chemistry (SSWC) model. The critical load of acidity is currently only exceeded by bulk sulphate deposition in 9% of the lakes if harvesting does not occur. However, the percentage increases to 23%, 56%, and 72% under potential harvesting scenarios that assume wood-only (stem without bark), stem-only, or whole-tree harvesting, respectively. This increase in exceedance of critical load is due to the much lower base cation concentrations in lakes resulting from base cation removals during harvest. For example, only 0.3% of lakes will have Ca2+ concentrations <50 μequiv.·L–1 if harvesting does not occur, whereas 52% of lakes will have Ca2+ concentrations <50 μequiv.·L–1 if whole-tree harvesting occurs. Harvesting clearly has an enormous potential impact on lake chemistry, which will become more apparent as exchangeable base cation pools in soil decline and acid inputs can no longer be buffered.


2018 ◽  
Vol 18 (13) ◽  
pp. 9897-9927 ◽  
Author(s):  
Paul A. Makar ◽  
Ayodeji Akingunola ◽  
Julian Aherne ◽  
Amanda S. Cole ◽  
Yayne-abeba Aklilu ◽  
...  

Abstract. Estimates of potential harmful effects on ecosystems in the Canadian provinces of Alberta and Saskatchewan due to acidifying deposition were calculated, using a 1-year simulation of a high-resolution implementation of the Global Environmental Multiscale-Modelling Air-quality and Chemistry (GEM-MACH) model, and estimates of aquatic and terrestrial ecosystem critical loads. The model simulation was evaluated against two different sources of deposition data: total deposition in precipitation and total deposition to snowpack in the vicinity of the Athabasca oil sands. The model captured much of the variability of observed ions in wet deposition in precipitation (observed versus model sulfur, nitrogen and base cation R2 values of 0.90, 0.76 and 0.72, respectively), while being biased high for sulfur deposition, and low for nitrogen and base cations (slopes 2.2, 0.89 and 0.40, respectively). Aircraft-based estimates of fugitive dust emissions, shown to be a factor of 10 higher than reported to national emissions inventories (Zhang et al., 2018), were used to estimate the impact of increased levels of fugitive dust on model results. Model comparisons to open snowpack observations were shown to be biased high, but in reasonable agreement for sulfur deposition when observations were corrected to account for throughfall in needleleaf forests. The model–observation relationships for precipitation deposition data, along with the expected effects of increased (unreported) base cation emissions, were used to provide a simple observation-based correction to model deposition fields. Base cation deposition was estimated using published observations of base cation fractions in surface-collected particles (Wang et al., 2015).Both original and observation-corrected model estimates of sulfur, nitrogen, and base cation deposition were used in conjunction with critical load data created using the NEG-ECP (2001) and CLRTAP (2017) methods for calculating critical loads, using variations on the Simple Mass Balance model for terrestrial ecosystems, and the Steady State Water Chemistry and First-order Acidity Balance models for aquatic ecosystems. Potential ecosystem damage was predicted within each of the regions represented by the ecosystem critical load datasets used here, using a combination of 2011 and 2013 emissions inventories. The spatial extent of the regions in exceedance of critical loads varied between 1  ×  104 and 3.3  ×  105 km2, for the more conservative observation-corrected estimates of deposition, with the variation dependent on the ecosystem and critical load calculation methodology. The larger estimates (for aquatic ecosystems) represent a substantial fraction of the area of the provinces examined.Base cation deposition was shown to be sufficiently high in the region to have a neutralizing effect on acidifying deposition, and the use of the aircraft and precipitation observation-based corrections to base cation deposition resulted in reasonable agreement with snowpack data collected in the oil sands area. However, critical load exceedances calculated using both observations and observation-corrected deposition suggest that the neutralization effect is limited in spatial extent, decreasing rapidly with distance from emissions sources, due to the rapid deposition of emitted primary dust particles as a function of their size. We strongly recommend the use of observation-based correction of model-simulated deposition in estimating critical load exceedances, in future work.


2002 ◽  
Vol 59 (8) ◽  
pp. 1287-1295 ◽  
Author(s):  
A Henriksen ◽  
P J Dillon ◽  
J Aherne

Critical loads of acidity and the amount by which these critical loads are exceeded by atmospheric deposition (termed "exceedances") were estimated for 1469 lakes from five regions in south-central Ontario, Canada, using single lake chemistry measurements and sulphur deposition data for the period 1976–1999. Based on the Steady-State Water Chemistry (SSWC) model, four of the five regions had low critical loads, which is consistent with the underlying geology (silicate bedrock) and the thin glacial soils in these regions. Sulphur deposition in the study area showed a clear downward trend over the time period, with a decrease of approximately 50% to current levels of approximately 44 meq·m–2·year–1. As a result of the declining deposition, the portion of lakes with critical load exceedances has dropped substantially, from 74–82% in the four sensitive regions in 1976 to 11–26% in 1999. The pentile critical load is typically used as a regional target to account for uncertainties, but also to ensure that a sufficient percentage of lakes are protected (95%). This suggests that further reductions in emissions are required to reduce depositions to approximately 34 meq·m–2·year–1 (11 kg S·ha–1·year–1) to prevent critical load exceedance.


2002 ◽  
Vol 6 (5) ◽  
pp. 833-848 ◽  
Author(s):  
S. A. Watmough ◽  
P. J. Dillon

Abstract. The impact of acid deposition and tree harvesting on three lakes and their representative sub-catchments in the Muskoka-Haliburton region of south-central Ontario was assessed using a critical loads approach. As nitrogen dynamics in forest soils are complex and poorly understood, for simplicity and to allow comparison among lakes and their catchments, CLs (A) for both lakes and forest soils were calculated assuming that nitrate leaching from catchments will not change over time (i.e. a best case scenario). In addition, because soils in the region are shallow, base cation weathering rates for the representative sub-catchments were calculated for the entire soil profile and these estimates were also used to calculate critical loads for the lakes. These results were compared with critical loads obtained by the Steady State Water Chemistry (SSWC) model. Using the SSWC model, critical loads for lakes were between 7 and 19 meq m-2yr-1 higher than those obtained from soil measurements. Lakes and forests are much more sensitive to acid deposition if forests are harvested, but two acid-sensitive lakes had much lower critical loads than their respective forested sub-catchments implying that acceptable acid deposition levels should be dictated by the most acid-sensitive lakes in the region. Under conditions that assume harvesting, the CL (A) is exceeded at two of the three lakes and five of the six sub-catchments assessed in this study. However, sulphate export from catchments greatly exceeds input in bulk deposition and, to prevent lakes from falling below the critical chemical limit, sulphate inputs to lakes must be reduced by between 37% and 92% if forests are harvested. Similarly, sulphate leaching from forested catchments that are harvested must be reduced by between 16 and 79% to prevent the ANC of water draining the rooting zone from falling below 0 μeq l-1. These calculations assume that extremely low calcium leaching losses (9–27 μeq l-1) from forest soils can be maintained without any decrease in forest productivity. Calcium concentrations in the three lakes have decreased by between ∼10 and 25% over the past 20 years and calculations assume that calcium concentrations in lakes can fall to around 30% of their current values without any harmful effects on biota. Both these assumptions require urgent investigation. Keywords: acid deposition, calcium, critical loads, forests, harvesting, lakes


1989 ◽  
Vol 69 (3) ◽  
pp. 611-627 ◽  
Author(s):  
D. R. COOTE ◽  
S. SHAH SINGH ◽  
C. WANG

Acid rain and N fertilizers both contribute to soil acidity, but no method has been available to compare their relative impacts. A simple model (SOLACID) is presented to assess quantitatively the acidifying effects of precipitation and N fertilizers on agricultural soils. Acid rain has been treated as a dilute solution of NH4NO3, (NH4)2SO4 and associated acids. Soil and plant pathways are considered for [Formula: see text], [Formula: see text]and [Formula: see text] by way of leaching, gaseous losses from microbial reduction, plant uptake and removal, and organic immobilization and mineralization. Leaching of [Formula: see text] was the factor to which the model was most sensitive. A relationship between base saturation and base cation leaching is described. Field data reported from 21 treatments at six experimental sites were used to test the model, which provided reliable estimates of final pH (r2 = 0.92**) and of changes in base saturation (r2 = 0.86**). Compared with previously published methods, the model provided the best estimates of lime requirements as computed from field measurements (r2 = 0.87**). Key words: Ammonia, sulfate, leaching, nitrification


2007 ◽  
Vol 298 (1-2) ◽  
pp. 69-79 ◽  
Author(s):  
Anika K. Richter ◽  
Lorenz Walthert ◽  
Emmanuel Frossard ◽  
Ivano Brunner

Sign in / Sign up

Export Citation Format

Share Document