scholarly journals Does discharge time source correspond to its geographic source in hydrograph separations? Toward identification of dominant runoff processes in a 300 square kilometer watershed

2014 ◽  
Vol 11 (9) ◽  
pp. 10931-10963
Author(s):  
Y. Yokoo

Abstract. This study compared a time source hydrograph separation method to a geographic source separation method, to assess if the two methods produced similar results. The time source separation of a hydrograph was performed using a numerical filter method and the geographic source separation was performed using an end-member mixing analysis employing hourly discharge, electric conductivity, and turbidity data. These data were collected in 2006 at the Kuroiwa monitoring station on the Abukuma River, Japan. The results of the methods corresponded well in terms of both surface flow components and inter-flow components. In terms of the baseflow component, the result of the time source separation method corresponded with the moving average of the baseflow calculated by the geographic source separation method. These results suggest that the time source separation method is not only able to estimate numerical values for the discharge components, but that the estimates are also reasonable from a geographical viewpoint in the 3000 km2 watershed discussed in this study. The consistent results obtained using the time source and geographic source separation methods demonstrate that it is possible to characterize dominant runoff processes using hourly discharge data, thereby enhancing our capability to interpret the dominant runoff processes of a watershed using observed discharge data alone.

2004 ◽  
Vol 35 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Hafzullah Aksoy ◽  
Tanju Akar ◽  
N. Erdem Ünal

Wavelets, functions with zero mean and finite variance, have recently been found to be appropriate tools in investigating geophysical, hydrological, meteorological, and environmental processes. In this study, a wavelet-based modeling technique is presented for suspended sediment discharge time series. The model generates synthetic series statistically similar to the observed data. In the model in which the Haar wavelet is used, the available data are decomposed into detail functions. By choosing randomly from among the detail functions, synthetic suspended sediment discharge series are composed. Results are compared with those obtained from a moving-average process fitted to the data set.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhiwei Zhang ◽  
Hongyuan Gao ◽  
Jingya Ma ◽  
Shihao Wang ◽  
Helin Sun

In order to resolve engineering problems that the performance of the traditional blind source separation (BSS) methods deteriorates or even becomes invalid when the unknown source signals are interfered by impulse noise with a low signal-to-noise ratio (SNR), a more effective and robust BSS method is proposed. Based on dual-parameter variable tailing (DPVT) transformation function, moving average filtering (MAF), and median filtering (MF), a filtering system that can achieve noise suppression in an impulse noise environment is proposed, noted as MAF-DPVT-MF. A hybrid optimization objective function is designed based on the two independence criteria to achieve more effective and robust BSS. Meanwhile, combining quantum computation theory with slime mould algorithm (SMA), quantum slime mould algorithm (QSMA) is proposed and QSMA is used to solve the hybrid optimization objective function. The proposed method is called BSS based on QSMA (QSMA-BSS). The simulation results show that QSMA-BSS is superior to the traditional methods. Compared with previous BSS methods, QSMA-BSS has a wider applications range, more stable performance, and higher precision.


2021 ◽  
Author(s):  
Jiqing Cong ◽  
Jianping Jing ◽  
Changmin Chen ◽  
Zezeng Dai ◽  
Jianhua Cheng

Sign in / Sign up

Export Citation Format

Share Document