scholarly journals El-Niño southern oscillation and rainfall erosivity in the headwater region of the Grande River Basin, Southeast Brazil

2011 ◽  
Vol 8 (6) ◽  
pp. 10707-10738 ◽  
Author(s):  
C. R. Mello ◽  
L. D. Norton ◽  
N. Curi ◽  
S. N. M. Yanagi ◽  
A. M. Silva

Abstract. Relationships between regional climate and oceanic and atmospheric anomalies are important tools in order to promote the development of models for predicting rainfall erosivity, especially in regions with substantial intra-annual variability in the rainfall regime. In this context, this work aimed to analyze the rainfall erosivity in headwaters of Grande River Basin, Southern Minas Gerais State, Brazil. This study considered the two most representative environments, the Mantiqueira Range (MR) and Plateau of Southern Minas Gerais (PSM). These areas are affected by the El Nino Southern Oscillation (ENSO) indicators Sea Surface Temperature (SST) for Niño 3.4 Region and Multivariate ENSO Index (MEI). Rainfall erosivity was calculated for individual rainfall events from January 2006 to December 2010. The analyses were conducted using the monthly data of ENSO indicators and the following rainfall variables: rainfall erosivity (EI30), rainfall depth (P), erosive rainfall depth (E), number of rainfall events (NRE), number of erosive rainfall events (NEE), frequency of occurrence of an early rainfall pattern (EP), occurrence of late rainfall pattern (LP) and occurrence of intermediate rainfall patter (IP). Pearson's coefficient of correlation was used to evaluate the relationships between the rainfall variables and SST and MEI. The coefficients of correlation were significant for SST in the PSM sub-region. Correlations between the rainfall variables and negative oscillations of SST were also significant, especially in the MR sub-region, however, the Person's coefficients were lesser than those obtained for the SST positive oscillations. The correlations between the rainfall variables and MEI were also significant but lesser than the SST correlations. These results demonstrate that SST positive oscillations play a more important role in rainfall erosivity, meaning they were more influenced by El-Niño episodes. Also, these results have shown that the ENSO variables have potential to be useful for rainfall erosivity forecasting in this region.

Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 256 ◽  
Author(s):  
Fuqiang Cao ◽  
Tao Gao ◽  
Li Dan ◽  
Lian Xie ◽  
Xiang Gong

Based on tropical cyclone (TC) track data and gridded observational rainfall data of CN05.1 during the period of 1961 to 2014, we examine the contribution of TCs on three metrics of summertime rainfall regimes and identify the connection between TC-induced precipitation events and El Niño–Southern Oscillation (ENSO) in middle–lower reaches of Yangtze River Basin (MLYRB). At the regional scale, TCs are responsible for approximately 14.4%, 12.5%, and 6.9% of rainfall events for normal, 75th, and 95th percentile precipitation cases, respectively. There is no evidence of significant long-term trends of the three type events linked with TCs, while their interdecadal variability is remarkable. Fractionally, larger proportions of TC-induced events occur along southeast coastal regions of MLYRB for normal rainfall events, and they are recorded over southwest and central-east MLYRB for 95th percentile cases. Moreover, a larger contribution of 95th percentile precipitation events to summer total rainfall is found than that for 75th percentile cases, suggesting that TCs may exert stronger impacts on the upper tail of summertime precipitation distribution across MLYRB. The TC-induced normal rainfall events tend to occur more frequency over central-west MLYRB during negative phase of ENSO in summer. However, the higher likelihood of TC-induced rainfall for three defined metrics are found over the majority of areas over MLYRB during negative ENSO phase in spring. In preceding winter, La Niña episode plays a crucial role in controlling the frequency of both normal and 75th percentile precipitation events.


2012 ◽  
Vol 36 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Carlos Rogério de Mello ◽  
Lloyd Darrell Norton ◽  
Nilton Curi ◽  
Silvia Nazaré Monteiro Yanagi

Relationships between regional climates and oceanic and atmospheric anomalies are important in understanding the rainfall regime of a given region. This work aimed to analyze rainfall erosivity in the Upper Grande River Basin, Southern Minas Gerais State, Brazil; namely the two most representative environments, the Mantiqueira Range (MR) and the Plateau of Campos das Vertentes (PCV). These areas can be affected by the El Niño Southern Oscillation (ENSO) phenomena, which can be evaluated by indicators such as Sea Surface Temperature (SST) for the Niño 3.4 Region. Rainfall erosivity was calculated for individual rainfall events from January, 2006 to December, 2010. Pearson's coefficient of correlation was used to evaluate the relationships between rainfall variables and SST. The coefficients of correlation were significant for both sub-regions. Correlations between the rainfall variables and negative oscillations of SST were also significant, especially in the MR sub-region, however, the Person's coefficients were lower than those obtained for the SST positive oscillations. These results demonstrate that El-Niño phenomenon can be considered an important factor in the intense rainfall behavior of the Upper Grande River Basin.


2018 ◽  
Vol 24 (2) ◽  
pp. 87-96
Author(s):  
Iput Pradiko ◽  
Eko Novandy Ginting ◽  
Nuzul Hijri Darlan ◽  
Winarna Winarna ◽  
Hasril Hasan Siregar

El Niño 2015 is one of the strongest El Niño. Drought stress due to El Niño could affect oil palm performances. This study was conducted to determine rainfall pattern and oil palm performance in Sumatra and Borneo Island during El Niño 2015. Data employed in this study is monthly rainfall data, Southern Oscillation Index (SOI) January-December 2015, andoil palm performances. Pearson correlation between SOI and rainfall data was used to analyze rainfall pattern, while oil palm performances were observed based on morphological conditions. Result shows that southern part of Sumatra and mostly part of Borneo suffer from more dry spell, dry month, and water deficit such as 37-133 days, 3-5 months, and 349-524 mm respectively. Analysis of rainfall pattern shows that Jambi, South Sumatra, Lampung, Central, South, and East Borneo are significantly (r ≥ +0,60) affected by El Niño 2015. Oil palms in southern part of Sumatra and mostly part of Borneo are suffer from drought stressmarked by the emergence of more than two spear fronds, appearing of many male flowers, malformations on bunches, fronds tend to hanging down, and lower fronds tend to dry.


2020 ◽  
Vol 4 (4) ◽  
pp. 699-711
Author(s):  
Justin A. Le ◽  
Hesham M. El-Askary ◽  
Mohamed Allali ◽  
Eman Sayed ◽  
Hani Sweliem ◽  
...  

AbstractUsing new mathematical and data-driven techniques, we propose new indices to measure and predict the strength of different El Niño events and how they affect regions like the Nile River Basin (NRB). Empirical Mode Decomposition (EMD), when applied to Southern Oscillation Index (SOI), yields three Intrinsic Mode Functions (IMF) tracking recognizable and physically significant non-stationary processes. The aim is to characterize underlying signals driving ENSO as reflected in SOI, and show that those signals also meaningfully affect other physical processes with scientific and predictive utility. In the end, signals are identified which have a strong statistical relationship with various physical factors driving ENSO variation. IMF 6 is argued to track El Niño and La Niña events occurrence, while IMFs 7 and 8 represent another signal, which reflects on variations in El Niño strength and variability between events. These we represent an underlying inter-annual variation between different El Niño events. Due to the importance of the latter, IMFs 7 and 8, are defined as Interannual ENSO Variability Indices (IEVI) and referred to as IEVI α and IEVI β. EMD when applied to the NRB precipitation, affecting the Blue Nile yield, identifying the IEVI-driven IMFs, with high correlations of up to ρ = 0.864, suggesting a decadal variability within NRB that is principally driven by interannual decadal-scale variability highlighting known geographical relationships. Significant hydrological processes, driving the Blue Nile yield, are accurately identified using the IEVI as a predictor. The IEVI-based model performed significantly at p = 0.038 with Blue Nile yield observations.


2005 ◽  
Vol 18 (22) ◽  
pp. 4840-4861 ◽  
Author(s):  
Tracy E. Twine ◽  
Christopher J. Kucharik ◽  
Jonathan A. Foley

Abstract Climatic and hydrologic observations and results from a terrestrial ecosystem model coupled to a regional-scale river-routing algorithm are used to document the associations between the El Niño–Southern Oscillation (ENSO) phenomenon and anomalies in climate, surface water balance, and river hydrology within the Mississippi River basin. While no ENSO signal is found in streamflow at the outlet of the basin in Vicksburg, Mississippi, significant anomalies in all water balance components are found in certain regions within the basin. ENSO is mainly associated with positive winter temperature anomalies, but hydrologic patterns vary with season, location, and ENSO phase. El Niño precipitation anomalies tend to affect evapotranspiration (ET) in the western half of the basin and runoff in the eastern half. La Niña events are associated with ET anomalies in the central portion of the basin and runoff anomalies in the southern and eastern portions of the basin. Both ENSO phases are associated with decreased snow depth. Anomalous soil moisture patterns occur at seasonal time scales and filter noisier spatial patterns of precipitation anomalies into coherent patterns with larger field significance; however, for all water budget components, there is a large amount of variability in response within a particular ENSO phase. With anomalies that are up to 4 times those of a typical event, it is clear that improved predictability of the onset and strength of an upcoming ENSO event is important for both water resource management and disaster mitigation.


Sign in / Sign up

Export Citation Format

Share Document