scholarly journals Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium

2012 ◽  
Vol 9 (1) ◽  
pp. 1411-1434
Author(s):  
J. Rozemeijer ◽  
C. Siderius ◽  
M. Verheul ◽  
H. Pomarius

Abstract. The inlet of diverted river water into agricultural areas or nature reserves is a frequently applied management strategy to prevent fresh water shortage. However, the inlet water might have negative consequences for water quality in the receiving water bodies. This study aimed to obtain a spatial image of the inlet water propagation into a hydrological complex polder area. We used anthropogenic gadolinium (Gd-anomaly) as a tracer for diverted river water. A clear reduction in the river water contribution was found from very dry conditions on 5 August 2010 to very wet conditions on 22 October. Despite the large inlet water impact on 5 August, the diverted river water did not propagate up into the small agricultural headwater ditches. Gadolinium proved to be an effective tracer for diverted river water in a polder system. We applied our results to upgrade the interpretation of water quality monitoring data and to validate our integrated nutrient transport models.

2012 ◽  
Vol 16 (8) ◽  
pp. 2405-2415 ◽  
Author(s):  
J. Rozemeijer ◽  
C. Siderius ◽  
M. Verheul ◽  
H. Pomarius

Abstract. Diverting river water into agricultural areas or nature reserves is a frequently applied management strategy to prevent fresh water shortage. However, the river water might have negative consequences for chemical and ecological water quality in the receiving water bodies. This study aimed to obtain a spatial image of the diverted river water propagation into a hydrologically complex polder area, the polder Quarles van Ufford in The Netherlands. We used anthropogenic gadolinium (Gd-anomaly) as a tracer for river water that was diverted into the polder. A clear reduction in the river water contribution was found between very dry conditions on 5 August 2010 and very wet conditions on 22 October. Despite the large river water impact on 5 August, the diverted river water did not propagate up into the small agricultural headwater ditches. Gadolinium proved to be an effective tracer for diverted river water in a polder system. We applied our results to upgrade the interpretation of water quality monitoring data and to validate an integrated nutrient transport model.


2021 ◽  
Author(s):  
Joaquim Farguell

<p>It is well known that mining activities have negative effects on fluvial ecosystems. Such activities alter the water quality by introducing heavy metals and associated pollutants and alter the sediment regime by creating a point source sediment that may affect the entire basin. </p><p>In the Llobregat River, a medium Mediterranean river basin (ca. 5000 km<sup>2</sup>), potash salt mining activities have been undertaken for several decades. Salinisation of surface river water has become an environmental issue of great concern for the water administrators given that the water of this river supplies half of the population of the metropolitan area of Barcelona (ca. 2,500,000 inhabitants) and it is also used for irrigation in the lowermost part of the river and its delta.</p><p>This study aims to describe the magnitude of the dissolved solids inputs that are detected in the river surface water after rainfall events by means of continuous electrical conductivity monitoring. Electrical conductivity records (EC) were obtained from an automatic water quality monitoring station set by the Water Catalan Authorities and located 3 km downstream from the potash mountain waste.  The study also tries to predict the EC peak according to different hydrometeorological parameters selected from the episodes recorded.</p><p>Data analysed was continuously recorded at 15-minute interval between January 1st, 2018 and September 30th, 2020 and a total of 74 EC episodes were considered. Mean EC of the episodes recorded was 3,488 µS/cm, with a standard deviation of 3,638 µS/cm, and a coefficient of variation of 104.3%. The median was 2,390 µS/cm. Data obtained show that after rainfall events a peak of electrical conductivity in the river is detected. However, it exhibits a high variability in its magnitude, ranging from 939 µS/cm up to 26,900 µS/cm. Despite this, the coefficients of determination of the regression lines between the meteorological variables, such as rainfall intensity or total rainfall amount, and the peak EC exhibit poor correlations (R<sup>2</sup>=0.355 and R<sup>2</sup>=0.229, respectively), although they are significant.</p><p>Results indicate that washload processes in the salt mountain waste take place and reach the river producing extremely high EC peak values during a short period of time. Such values can have harmful effects on the river ecosystem and affect the lowerland river area, where water is diverted for potabilization and irrigation purposes. However, the low correlation between rainfall and EC peak indicates that additional variables intervene in the rainfall-runoff processes and further research is required to fully understand the connectivity and transmission of the salt moutain waste into the river. Understanding such processes and analyasing the consequences on the fluvial system, will probably be the way to tackle the restoration of this enormous impact on this river ecosystem.</p>


2014 ◽  
Vol 72 (12) ◽  
pp. 4745-4756 ◽  
Author(s):  
Nina Hagemann ◽  
Bernd Klauer ◽  
Ruby M. Moynihan ◽  
Marco Leidel ◽  
Nicole Scheifhacken

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2411
Author(s):  
Seulbi Lee ◽  
Jaehoon Kim ◽  
Jongyeon Hwang ◽  
EunJi Lee ◽  
Kyoung-Jin Lee ◽  
...  

It is essential to monitor water quality for river water management because river water is used for various purposes and is directly related to the health and safety of a population. Proper network installation and removal is an important part of water quality monitoring and network operation efficiency. To do this, cluster analysis based on calculated similarity between measuring stations can be used. In this study, we measured the similarities between 12 water quality monitoring stations of the Bukhan River. River water quality data always have a station-dependent time lag because water flows from upstream to downstream; therefore, we proposed a Dynamic Time Warping (DTW) algorithm that searches for the minimum distance by changing and comparing time-points, rather than using the Euclidean algorithm, which compares the same time-point. Both Euclidean and DTW algorithms were applied to nine water quality variables to identify similarities between stations, and K-medoids cluster analysis were performed based on the similarity. The Clustering Validation Index (CVI) was used to select the optimal number of clusters. Our results show that the Euclidean algorithm formed clusters by mixing mainstream and tributary stations; the mainstream stations were largely divided into three different clusters. In contrast, the DTW algorithm formed clear clusters by reflecting the characteristics of water quality and watershed. Furthermore, because the Euclidean algorithm requires the lengths of the time series to be the same, data loss was inevitable. As a result, even where clusters were the same as those obtained by DTW, the characteristics of the water quality variables in the cluster differed. The DTW analysis in this study provides useful information for understanding the similarity or difference in water parameter values between different locations. Thus, the number and location of required monitoring stations can be adjusted to improve the efficiency of field monitoring network management.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 639
Author(s):  
HA Mohiyaden ◽  
LM Sidek ◽  
G Hayder ◽  
MN Noh

The quality of Klang river water is deteriorating dramatically since it is in urban places every day and become one of the major problems.  Therefore, the Malaysian government had initiated one river cleaning project named River of Life (ROL) project. This project is for rehabilitating and restoring the Klang river. A series of river water treatment plant (RWTP)s have been operated in Klang river catchment since 2014. Six RWTPs station has been monitored up to eight stations until presents. Eight parameters consisting of physio-chemical types and biological types have been recorded. RWTP effluent discharges are targeted to achieve Malaysia Interim National Water Quality Standard (INWQS) under Class II B. Since previous RWTP performance only emphasized on local river pollutants and certain conditions, this paper will investigate the effectiveness of full-scale RWTP unit process for river condition. Water quality assessment are involved which are consist of effluent water quality monitoring and pollutant removal efficiency. Most of the major pollutants able to be reduced by more than 50% reduction. Although BOD and AN still not able to achieve standard range gazetted by INWQS Class IIB, there is an improvement of river water quality at Klang River by using IFAS technology adopted in the RWTP system.


2017 ◽  
Vol 24 (8) ◽  
pp. 3241-3265 ◽  
Author(s):  
Himanshu Jindal ◽  
Sharad Saxena ◽  
Singara Singh Kasana

Sign in / Sign up

Export Citation Format

Share Document