scholarly journals Evaluation of a complementary based model for mapping land surface evapotranspiration

2012 ◽  
Vol 9 (3) ◽  
pp. 3029-3062 ◽  
Author(s):  
Z. Sun ◽  
Q. Wang ◽  
Z. Ouyang ◽  
Y. Yang

Abstract. A modified Priestley-Taylor (P-T) equation was proposed by Venturini et al. (2008) to map actual evapotranspiration (ET) based solely on satellite remote sensing data, involving a parameter based on a scaled temperature between dew point temperature and surface temperature. In this study, however, theoretical analyses and field experimental evidence show that it is hard to obtain this scaled temperature using dew point temperature and surface temperature. This study also presents a new parameterization method using air temperature, surface temperature, and surface temperature of a reference dry surface. The actual ET estimates obtained by means of our proposed parameterization method are validated at a site scale, and a case study is conducted to map actual ET from Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) images using our proposed method. Results of ground-based validation and a case study of mapping ET using ASTER images indicate that the improvement on the modified P-T equation proposed by Venturini et al. (2008) can contribute to generating reliable actual ET.

MAUSAM ◽  
2022 ◽  
Vol 53 (4) ◽  
pp. 417-424
Author(s):  
SUTAPA CHAUDHURI ◽  
SURAJIT CHATTOPADHYAY

The concept of Multi Layer Perceptron and Fuzzy logic is introduced in this paper to recognize the pattern of surface parameters pertaining to forecast the occurrence of pre-monsoon thunderstorms over Kolkata (22 ° 32¢ , 88 ° 20¢ ).   The results reveal that surface temperature fluctuates significantly from Fuzzy Multi Layer Perceptron (FMLP) model values on thunderstorm days whereas on non-thunderstorm days FMLP model fits well with the surface temperature.   The results further indicate that no definite pattern could be made available with surface dew point temperature and surface pressure that can help in forecasting the occurrence of these storms.


2012 ◽  
Vol 516-517 ◽  
pp. 1201-1204
Author(s):  
Hai Qian Zhao ◽  
Zhong Hua Wang ◽  
Xiao Yan Liu ◽  
Zhi Guo Wang

The outer surface temperature of cold insulation structure must be higher than air dew point temperature is stipulated in national standard.But the outer surface temperature of cold insulation structure and air dew point temperature normally wave in a certain range with the change of environmental parameters. In Practical application, it is difficult to determine the relationship between these two temperatures. Functional relationship between the outer temperature, air dew point temperature and environmental temperature or humidity is fitted.The influence of the air temperature and humidity is analyzed. Some suggestions about design and evaluation index of cold insulation are offered based on this research.


2010 ◽  
Vol 27 (10) ◽  
pp. 1677-1688 ◽  
Author(s):  
África Barreto ◽  
Manuel Arbelo ◽  
Pedro A. Hernández-Leal ◽  
Laia Núñez-Casillas ◽  
María Mira ◽  
...  

Abstract The land surface temperature (LST) and emissivity (LSE) derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were evaluated in a low spectral contrast volcanic site at an altitude of 2000 m on the island of Tenerife, Spain. The test site is almost flat, thermally homogeneous, and without vegetation cover or variation in its surface composition. ASTER data correspond to six scenes, under both day- and nighttime conditions during 2008. This case study analyzes the impacts of the sources of inaccuracies using the temperature–emissivity separation (TES) algorithm. Uncertainties associated with inaccurate atmospheric correction were minimized by means of local soundings and the climate advantages of the area. Concurrent ground-based radiometric measurements were performed for LST, and laboratory and field measurements for LSE, to obtain reference values. The TES evaluation showed a good level of agreement in the emissivity derived for ASTER bands 13 and 14 [root-mean-square difference (RMSD) lower than 0.002] and discrepancies in ASTER bands 10 and 11 that were within the expected performance of the algorithm (±0.015). However, out-of-threshold errors were retrieved in band 12, producing an artificial increase in spectral contrast. The underestimated TES LSE spectra point to the presence of a roughness effect at measurement scales that may increase the laboratory band emissivity values. TES LST comparison with ground data showed an RMSD value of 0.5 K. ASTER standard products AST08 (LST) and AST05 (LSE) atmospherically corrected by means of Naval Research Laboratory (NRL) data were also tested, showing a similar level of performance for the TES implemented with local soundings, but failed in high-humidity atmospheric conditions.


Author(s):  
Yue Jiang ◽  
WenPeng Lin

In the trend of global warming and urbanization, frequent extreme weather has a severe impact on the lives of citizens. Land Surface Temperature (LST) is an essential climate variable and a vital parameter for land surface processes at local and global scales. Retrieving LST from global, regional, and city-scale thermal infrared remote sensing data has unparalleled advantages and is one of the most common methods used to study urban heat island effects. Different algorithms have been developed for retrieving LST using satellite imagery, such as the Radiative Transfer Equation (RTE), Mono-Window Algorithm (MWA), Split-Window Algorithm (SWA), and Single-Channel Algorithm (SCA). A case study was performed in Shanghai to evaluate these existing algorithms in the retrieval of LST from Landsat-8 images. To evaluate the estimated LST accurately, measured data from meteorological stations and the MOD11A2 product were used for validation. The results showed that the four algorithms could achieve good results in retrieving LST, and the LST retrieval results were generally consistent within a spatial scale. SWA is more suitable for retrieving LST in Shanghai during the summer, a season when the temperature and the humidity are both very high in Shanghai. Highest retrieval accuracy could be seen in cultivated land, vegetation, wetland, and water body. SWA was more sensitive to the error caused by land surface emissivity (LSE). In low temperature and a dry winter, RTE, SWA, and SCA are relatively more reliable. Both RTE and SCA were sensitive to the error caused by atmospheric water vapor content. These results can provide a reasonable reference for the selection of LST retrieval algorithms for different periods in Shanghai.


2019 ◽  
Vol 132 (5) ◽  
pp. 667-682
Author(s):  
Kourosh Qaderi ◽  
Bahram Bakhtiari ◽  
Mohamad Reza Madadi ◽  
Zahra Afzali-Gorouh

2015 ◽  
Vol 752-753 ◽  
pp. 628-631
Author(s):  
Hana Sevcikova ◽  
Eva Rykalová ◽  
Radek Fabian ◽  
Zdenek Perina ◽  
Marcela Halirova ◽  
...  

Article deals with the issue of mold in masonry structures. Attention was focused on the critical detail at expansion joint. Variants of solved detail are focused on the process of surface temperatures in the structure. This detail needs to be solved because of revitalization of the structure. Isotherms of the critical inner surface temperature and dew point temperature were used for the evaluation of the variants.


Sign in / Sign up

Export Citation Format

Share Document