scholarly journals A new method to calibrate aerodynamic roughness over the Tibetan Plateau using Ensemble Kalman Filter

2012 ◽  
Vol 9 (4) ◽  
pp. 5195-5224
Author(s):  
J. H. Lee ◽  
J. Timmermans ◽  
Z. Su ◽  
M. Mancini

Abstract. Aerodynamic roughness height (Zom) is a key parameter required in land surface hydrological model, since errors in heat flux estimations are largely dependent on accurate optimization of this parameter. Despite its significance, it remains an uncertain parameter that is not easily determined. This is mostly because of non-linear relationship in Monin-Obukhov Similarity (MOS) and unknown vertical characteristic of vegetation. Previous studies determined aerodynamic roughness using traditional wind profile method, remotely sensed vegetation index, minimization of cost function over MOS relationship or linear regression. However, these are complicated procedures that presume high accuracy for several other related parameters embedded in MOS equations. In order to simplify a procedure and reduce the number of parameters in need, this study suggests a new approach to extract aerodynamic roughness parameter via Ensemble Kalman Filter (EnKF) that affords non-linearity and that requires only single or two heat flux measurement. So far, to our knowledge, no previous study has applied EnKF to aerodynamic roughness estimation, while a majority of data assimilation study has paid attention to land surface state variables such as soil moisture or land surface temperature. This approach was applied to grassland in semi-arid Tibetan area and maize on moderately wet condition in Italy. It was demonstrated that aerodynamic roughness parameter can inversely be tracked from data assimilated heat flux analysis. The aerodynamic roughness height estimated in this approach was consistent with eddy covariance result and literature value. Consequently, this newly estimated input adjusted the sensible heat overestimated and latent heat flux underestimated by the original Surface Energy Balance System (SEBS) model, suggesting better heat flux estimation especially during the summer Monsoon period. The advantage of this approach over other methodologies is that aerodynamic roughness height estimated in this way is useful even when eddy covariance data are absent and is time-variant over vegetation growth, as well as is not affected by saturation problem of remotely sensed vegetation index.

2012 ◽  
Vol 16 (11) ◽  
pp. 4291-4302 ◽  
Author(s):  
J. H. Lee ◽  
J. Timmermans ◽  
Z. Su ◽  
M. Mancini

Abstract. Aerodynamic roughness height (Zom) is a key parameter required in several land surface hydrological models, since errors in heat flux estimation are largely dependent on optimization of this input. Despite its significance, it remains an uncertain parameter which is not readily determined. This is mostly because of non-linear relationship in Monin-Obukhov similarity (MOS) equations and uncertainty of vertical characteristic of vegetation in a large scale. Previous studies often determined aerodynamic roughness using a minimization of cost function over MOS relationship or linear regression over it, traditional wind profile method, or remotely sensed vegetation index. However, these are complicated procedures that require a high accuracy for several other related parameters embedded in serveral equations including MOS. In order to simplify this procedure and reduce the number of parameters in need, this study suggests a new approach to extract aerodynamic roughness parameter from single or two heat flux measurements analyzed via Ensemble Kalman Filter (EnKF) that affords non-linearity. So far, to our knowledge, no previous study has applied EnKF to aerodynamic roughness estimation, while the majority of data assimilation study have paid attention to updates of other land surface state variables such as soil moisture or land surface temperature. The approach of this study was applied to grassland in semi-arid Tibetan Plateau and maize on moderately wet condition in Italy. It was demonstrated that aerodynamic roughness parameter can be inversely tracked from heat flux EnKF final analysis. The aerodynamic roughness height estimated in this approach was consistent with eddy covariance method and literature value. Through a calibration of this parameter, this adjusted the sensible heat previously overestimated and latent heat flux previously underestimated by the original Surface Energy Balance System (SEBS) model. It was considered that this improved heat flux estimation especially during the summer Monsoon period, based upon a comparison with precipitation and soil moisture field measurement. For an advantage of this approach over other previous methodologies, this approach is useful even when eddy covariance data are absent at a large scale and is time-variant over vegetation growth, as well as is not directly affected by saturation problem of remotely sensed vegetation index.


2018 ◽  
Vol 7 (7) ◽  
pp. 275 ◽  
Author(s):  
Bipin Acharya ◽  
Chunxiang Cao ◽  
Min Xu ◽  
Laxman Khanal ◽  
Shahid Naeem ◽  
...  

Dengue fever is one of the leading public health problems of tropical and subtropical countries across the world. Transmission dynamics of dengue fever is largely affected by meteorological and environmental factors, and its temporal pattern generally peaks in hot-wet periods of the year. Despite this continuously growing problem, the temporal dynamics of dengue fever and associated potential environmental risk factors are not documented in Nepal. The aim of this study was to fill this research gap by utilizing epidemiological and earth observation data in Chitwan district, one of the frequent dengue outbreak areas of Nepal. We used laboratory confirmed monthly dengue cases as a dependent variable and a set of remotely sensed meteorological and environmental variables as explanatory factors to describe their temporal relationship. Descriptive statistics, cross correlation analysis, and the Poisson generalized additive model were used for this purpose. Results revealed that dengue fever is significantly associated with satellite estimated precipitation, normalized difference vegetation index (NDVI), and enhanced vegetation index (EVI) synchronously and with different lag periods. However, the associations were weak and insignificant with immediate daytime land surface temperature (dLST) and nighttime land surface temperature (nLST), but were significant after 4–5 months. Conclusively, the selected Poisson generalized additive model based on the precipitation, dLST, and NDVI explained the largest variation in monthly distribution of dengue fever with minimum Akaike’s Information Criterion (AIC) and maximum R-squared. The best fit model further significantly improved after including delayed effects in the model. The predicted cases were reasonably accurate based on the comparison of 10-fold cross validation and observed cases. The lagged association found in this study could be useful for the development of remote sensing-based early warning forecasts of dengue fever.


2016 ◽  
Vol 20 (2) ◽  
pp. 697-713 ◽  
Author(s):  
H. Hoffmann ◽  
H. Nieto ◽  
R. Jensen ◽  
R. Guzinski ◽  
P. Zarco-Tejada ◽  
...  

Abstract. Estimating evaporation is important when managing water resources and cultivating crops. Evaporation can be estimated using land surface heat flux models and remotely sensed land surface temperatures (LST), which have recently become obtainable in very high resolution using lightweight thermal cameras and Unmanned Aerial Vehicles (UAVs). In this study a thermal camera was mounted on a UAV and applied into the field of heat fluxes and hydrology by concatenating thermal images into mosaics of LST and using these as input for the two-source energy balance (TSEB) modelling scheme. Thermal images are obtained with a fixed-wing UAV overflying a barley field in western Denmark during the growing season of 2014 and a spatial resolution of 0.20 m is obtained in final LST mosaics. Two models are used: the original TSEB model (TSEB-PT) and a dual-temperature-difference (DTD) model. In contrast to the TSEB-PT model, the DTD model accounts for the bias that is likely present in remotely sensed LST. TSEB-PT and DTD have already been well tested, however only during sunny weather conditions and with satellite images serving as thermal input. The aim of this study is to assess whether a lightweight thermal camera mounted on a UAV is able to provide data of sufficient quality to constitute as model input and thus attain accurate and high spatial and temporal resolution surface energy heat fluxes, with special focus on latent heat flux (evaporation). Furthermore, this study evaluates the performance of the TSEB scheme during cloudy and overcast weather conditions, which is feasible due to the low data retrieval altitude (due to low UAV flying altitude) compared to satellite thermal data that are only available during clear-sky conditions. TSEB-PT and DTD fluxes are compared and validated against eddy covariance measurements and the comparison shows that both TSEB-PT and DTD simulations are in good agreement with eddy covariance measurements, with DTD obtaining the best results. The DTD model provides results comparable to studies estimating evaporation with similar experimental setups, but with LST retrieved from satellites instead of a UAV. Further, systematic irrigation patterns on the barley field provide confidence in the veracity of the spatially distributed evaporation revealed by model output maps. Lastly, this study outlines and discusses the thermal UAV image processing that results in mosaics suited for model input. This study shows that the UAV platform and the lightweight thermal camera provide high spatial and temporal resolution data valid for model input and for other potential applications requiring high-resolution and consistent LST.


2011 ◽  
Vol 15 (8) ◽  
pp. 2437-2457 ◽  
Author(s):  
S. Nie ◽  
J. Zhu ◽  
Y. Luo

Abstract. The performance of the ensemble Kalman filter (EnKF) in soil moisture assimilation applications is investigated in the context of simultaneous state-parameter estimation in the presence of uncertainties from model parameters, soil moisture initial condition and atmospheric forcing. A physically based land surface model is used for this purpose. Using a series of identical twin experiments in two kinds of initial parameter distribution (IPD) scenarios, the narrow IPD (NIPD) scenario and the wide IPD (WIPD) scenario, model-generated near surface soil moisture observations are assimilated to estimate soil moisture state and three hydraulic parameters (the saturated hydraulic conductivity, the saturated soil moisture suction and a soil texture empirical parameter) in the model. The estimation of single imperfect parameter is successful with the ensemble mean value of all three estimated parameters converging to their true values respectively in both NIPD and WIPD scenarios. Increasing the number of imperfect parameters leads to a decline in the estimation performance. A wide initial distribution of estimated parameters can produce improved simultaneous multi-parameter estimation performances compared to that of the NIPD scenario. However, when the number of estimated parameters increased to three, not all parameters were estimated successfully for both NIPD and WIPD scenarios. By introducing constraints between estimated hydraulic parameters, the performance of the constrained three-parameter estimation was successful, even if temporally sparse observations were available for assimilation. The constrained estimation method can reduce RMSE much more in soil moisture forecasting compared to the non-constrained estimation method and traditional non-parameter-estimation assimilation method. The benefit of this method in estimating all imperfect parameters simultaneously can be fully demonstrated when the corresponding non-constrained estimation method displays a relatively poor parameter estimation performance. Because all these constraints between parameters were obtained in a statistical sense, this constrained state-parameter estimation scheme is likely suitable for other land surface models even with more imperfect parameters estimated in soil moisture assimilation applications.


2019 ◽  
Vol 11 (7) ◽  
pp. 753 ◽  
Author(s):  
Guodong Zhang ◽  
Hongmin Zhou ◽  
Changjing Wang ◽  
Huazhu Xue ◽  
Jindi Wang ◽  
...  

Continuous, long-term sequence, land surface albedo data have crucial significance for climate simulations and land surface process research. Sensors such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer (VIIRS) provide global albedo product data sets with a spatial resolution of 500 m over long time periods. There is demand for new high-resolution albedo data for regional applications. High-resolution observations are often unavailable due to cloud contamination, which makes it difficult to obtain time series albedo estimations. This paper proposes an “amalgamation albedo“ approach to generate daily land surface shortwave albedo with 30 m spatial resolution using Landsat data and the MODIS Bidirectional Reflectance Distribution Functions (BRDF)/Albedo product MCD43A3 (V006). Historical MODIS land surface albedo products were averaged to obtain an albedo estimation background, which was used to construct the albedo dynamic model . The Thematic Mapper (TM) albedo derived via direct estimation approach was then introduced to generate high spatial-temporal resolution albedo data based on the Ensemble Kalman Filter algorithm (EnKF). Estimation results were compared to field observations for cropland, deciduous broadleaf forest, evergreen needleleaf forest, grassland, and evergreen broadleaf forest domains. The results indicated that for all land cover types, the estimated albedos coincided with ground measurements at a root mean squared error (RMSE) of 0.0085–0.0152. The proposed algorithm was then applied to regional time series albedo estimation; the results indicated that it captured spatial and temporal variation patterns for each site. Taken together, our results suggest that the amalgamation albedo approach is a feasible solution to generate albedo data sets with high spatio-temporal resolution.


Sign in / Sign up

Export Citation Format

Share Document