scholarly journals Evaluation of TsHARP Utility for Thermal Sharpening of Sentinel-3 Satellite Images Using Sentinel-2 Visual Imagery

2019 ◽  
Vol 11 (19) ◽  
pp. 2304 ◽  
Author(s):  
Hanna Huryna ◽  
Yafit Cohen ◽  
Arnon Karnieli ◽  
Natalya Panov ◽  
William P. Kustas ◽  
...  

A spatially distributed land surface temperature is important for many studies. The recent launch of the Sentinel satellite programs paves the way for an abundance of opportunities for both large area and long-term investigations. However, the spatial resolution of Sentinel-3 thermal images is not suitable for monitoring small fragmented fields. Thermal sharpening is one of the primary methods used to obtain thermal images at finer spatial resolution at a daily revisit time. In the current study, the utility of the TsHARP method to sharpen the low resolution of Sentinel-3 thermal data was examined using Sentinel-2 visible-near infrared imagery. Compared to Landsat 8 fine thermal images, the sharpening resulted in mean absolute errors of ~1 °C, with errors increasing as the difference between the native and the target resolutions increases. Part of the error is attributed to the discrepancy between the thermal images acquired by the two platforms. Further research is due to test additional sites and conditions, and potentially additional sharpening methods, applied to the Sentinel platforms.

2020 ◽  
Vol 12 (3) ◽  
pp. 579
Author(s):  
Athos Agapiou

The use of medium resolution, open access, and freely distributed satellite images, such as those of Landsat, is still understudied in the domain of archaeological research, mainly due to restrictions of spatial resolution. This investigation aims to showcase how the synergistic use of Landsat and Sentinel optical sensors can efficiently support archaeological research through object-based image analysis (OBIA), a relatively new scientific trend, as highlighted in the relevant literature, in the domain of remote sensing archaeology. Initially, the fusion of a 30 m spatial resolution Landsat 8 OLI/TIRS Level-2 and a 10 m spatial resolution Sentinel 2 Level-1C optical images, over the archaeological site of “Nea Paphos” in Cyprus, are evaluated in order to improve the spatial resolution of the Landsat image. At this step, various known fusion models are implemented and evaluated, namely Gram–Schmidt, Brovey, principal component analysis (PCA), and hue-saturation-value (HSV) algorithms. In addition, all four 10 m available spectral bands of the Sentinel 2 sensor, namely the blue, green, red, and near-infrared bands (Bands 2 to 4 and Band 8, respectively) were assessed for each of the different fusion models. On the basis of these findings, the next step of the study, focused on the image segmentation process, through the evaluation of different scale factors. The segmentation process is an important step moving from pixel-based to object-based image analysis. The overall results show that the Gram–Schmidt fusion method based on the near-infrared band of the Sentinel 2 (Band 8) at a range of scale factor segmentation to 70 are the optimum parameters for the detection of standing visible monuments, monitoring excavated areas, and detecting buried archaeological remains, without any significant spectral distortion of the original Landsat image. The new 10 m fused Landsat 8 image provides further spatial details of the archaeological site and depicts, through the segmentation process, important details within the landscape under examination.


2020 ◽  
Vol 12 (9) ◽  
pp. 1453
Author(s):  
Juan M. Sánchez ◽  
Joan M. Galve ◽  
José González-Piqueras ◽  
Ramón López-Urrea ◽  
Raquel Niclòs ◽  
...  

Downscaling techniques offer a solution to the lack of high-resolution satellite Thermal InfraRed (TIR) data and can bridge the gap until operational TIR missions accomplishing spatio-temporal requirements are available. These techniques are generally based on the Visible Near InfraRed (VNIR)-TIR variable relations at a coarse spatial resolution, and the assumption that the relationship between spectral bands is independent of the spatial resolution. In this work, we adopted a previous downscaling method and introduced some adjustments to the original formulation to improve the model performance. Maps of Land Surface Temperature (LST) with 10-m spatial resolution were obtained as output from the combination of MODIS/Sentinel-2 images. An experiment was conducted in an agricultural area located in the Barrax test site, Spain (39°03′35″ N, 2°06′ W), for the summer of 2018. Ground measurements of LST transects collocated with the MODIS overpasses were used for a robust local validation of the downscaling approach. Data from 6 different dates were available, covering a variety of croplands and surface conditions, with LST values ranging 300–325 K. Differences within ±4.0 K were observed between measured and modeled temperatures, with an average estimation error of ±2.2 K and a systematic deviation of 0.2 K for the full ground dataset. A further cross-validation of the disaggregated 10-m LST products was conducted using an additional set of Landsat-7/ETM+ images. A similar uncertainty of ±2.0 K was obtained as an average. These results are encouraging for the adaptation of this methodology to the tandem Sentinel-3/Sentinel-2, and are promising since the 10-m pixel size, together with the 3–5 days revisit frequency of Sentinel-2 satellites can fulfill the LST input requirements of the surface energy balance methods for a variety of hydrological, climatological or agricultural applications. However, certain limitations to capture the variability of extreme LST, or in recently sprinkler irrigated fields, claim the necessity to explore the implementation of soil moisture or vegetation indices sensitive to soil water content as inputs in the downscaling approach. The ground LST dataset introduced in this paper will be of great value for further refinements and assessments.


2019 ◽  
Vol 11 (6) ◽  
pp. 632 ◽  
Author(s):  
Belen Franch ◽  
Eric Vermote ◽  
Sergii Skakun ◽  
Jean-Claude Roger ◽  
Jeffrey Masek ◽  
...  

The Harmonized Landsat/Sentinel-2 (HLS) project aims to generate a seamless surface reflectance product by combining observations from USGS/NASA Landsat-8 and ESA Sentinel-2 remote sensing satellites. These satellites’ sampling characteristics provide nearly constant observation geometry and low illumination variation through the scene. However, the illumination variation throughout the year impacts the surface reflectance by producing higher values for low solar zenith angles and lower reflectance for large zenith angles. In this work, we present a model to derive the bidirectional reflectance distribution function (BRDF) normalization and apply it to the HLS product at 30 m spatial resolution. It is based on the BRDF parameters estimated from the MODerate Resolution Imaging Spectroradiometer (MODIS) surface reflectance product (M{O,Y}D09) at 1 km spatial resolution using the VJB method (Vermote et al., 2009). Unsupervised classification (segmentation) of HLS images is used to disaggregate the BRDF parameters to the HLS spatial resolution and to build a BRDF parameters database at HLS scale. We first test the proposed BRDF normalization for different solar zenith angles over two homogeneous sites, in particular one desert and one Peruvian Amazon forest. The proposed method reduces both the correlation with the solar zenith angle and the coefficient of variation (CV) of the reflectance time series in the red and near infrared bands to 4% in forest and keeps a low CV of 3% to 4% for the deserts. Additionally, we assess the impact of the view zenith angle (VZA) in an area of the Brazilian Amazon forest close to the equator, where impact of the angular variation is stronger because it occurs in the principal plane. The directional reflectance shows a strong dependency with the VZA. The current HLS BRDF correction reduces this dependency but still shows an under-correction, especially in the near infrared, while the proposed method shows no dependency with the view angles. We also evaluate the BRDF parameters using field surface albedo measurements as a reference over seven different sites of the US surface radiation budget observing network (SURFRAD) and five sites of the Australian OzFlux network.


2017 ◽  
Vol 17 (5) ◽  
pp. 627-639 ◽  
Author(s):  
Andreas Kääb ◽  
Bas Altena ◽  
Joseph Mascaro

Abstract. Satellite measurements of coseismic displacements are typically based on synthetic aperture radar (SAR) interferometry or amplitude tracking, or based on optical data such as from Landsat, Sentinel-2, SPOT, ASTER, very high-resolution satellites, or air photos. Here, we evaluate a new class of optical satellite images for this purpose – data from cubesats. More specific, we investigate the PlanetScope cubesat constellation for horizontal surface displacements by the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake. Single PlanetScope scenes are 2–4 m-resolution visible and near-infrared frame images of approximately 20–30 km  ×  9–15 km in size, acquired in continuous sequence along an orbit of approximately 375–475 km height. From single scenes or mosaics from before and after the earthquake, we observe surface displacements of up to almost 10 m and estimate matching accuracies from PlanetScope data between ±0.25 and ±0.7 pixels (∼ ±0.75 to ±2.0 m), depending on time interval and image product type. Thereby, the most optimistic accuracy estimate of ±0.25 pixels might actually be typical for the final, sun-synchronous, and near-polar-orbit PlanetScope constellation when unrectified data are used for matching. This accuracy, the daily revisit anticipated for the PlanetScope constellation for the entire land surface of Earth, and a number of other features, together offer new possibilities for investigating coseismic and other Earth surface displacements and managing related hazards and disasters, and complement existing SAR and optical methods. For comparison and for a better regional overview we also match the coseismic displacements by the 2016 Kaikoura earthquake using Landsat 8 and Sentinel-2 data.


2021 ◽  
Vol 13 (5) ◽  
pp. 872 ◽  
Author(s):  
Sergii Skakun ◽  
Natacha I. Kalecinski ◽  
Meredith G. L. Brown ◽  
David M. Johnson ◽  
Eric F. Vermote ◽  
...  

Crop yield monitoring is an important component in agricultural assessment. Multi-spectral remote sensing instruments onboard space-borne platforms such as Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) have shown to be useful for efficiently generating timely and synoptic information on the yield status of crops across regional levels. However, the coarse spatial resolution data inherent to these sensors provides little utility at the management level. Recent satellite imagery collection advances toward finer spatial resolution (down to 1 m) alongside increased observational cadence (near daily) implies information on crops obtainable at field and within-field scales to support farming needs is now possible. To test this premise, we focus on assessing the efficiency of multiple satellite sensors, namely WorldView-3, Planet/Dove-Classic, Sentinel-2, and Landsat 8 (through Harmonized Landsat Sentinel-2 (HLS)), and investigate their spatial, spectral (surface reflectance (SR) and vegetation indices (VIs)), and temporal characteristics to estimate corn and soybean yields at sub-field scales within study sites in the US state of Iowa. Precision yield data as referenced to combine harvesters’ GPS systems were used for validation. We show that imagery spatial resolution of 3 m is critical to explaining 100% of the within-field yield variability for corn and soybean. Our simulation results show that moving to coarser resolution data of 10 m, 20 m, and 30 m reduced the explained variability to 86%, 72%, and 59%, respectively. We show that the most important spectral bands explaining yield variability were green (0.560 μm), red-edge (0.726 μm), and near-infrared (NIR − 0.865 μm). Furthermore, the high temporal frequency of Planet and a combination of Sentinel-2/Landsat 8 (HLS) data allowed for optimal date selection for yield map generation. Overall, we observed mixed performance of satellite-derived models with the coefficient of determination (R2) varying from 0.21 to 0.88 (averaging 0.56) for the 30 m HLS and from 0.09 to 0.77 (averaging 0.30) for 3 m Planet. R2 was lower for fields with higher yields, suggesting saturation of the satellite-collected reflectance features in those cases. Therefore, other biophysical variables, such as soil moisture and evapotranspiration, at similar fine spatial resolutions are likely needed alongside the optical imagery to fully explain the yields.


2017 ◽  
Author(s):  
Andreas Kääb ◽  
Bas Altena ◽  
Joseph Mascaro

Abstract. Satellite measurements of coseismic displacements are typically based on Synthetic Aperture Radar (SAR) interferometry or amplitude tracking, or based on optical data such as from Landsat, Sentinel-2, SPOT, ASTER, very-high resolution satellites, or airphotos. Here, we evaluate a new class of optical satellite images for this purpose – data from cubesats. More specific, we investigate the PlanetScope cubesat constellation for horizontal surface displacements by the 14 November 2016 Mw7.8 Kaikoura, New Zealand, earthquake. Single PlanetScope scenes are 2–4 m resolution visible and near-infrared frame images of approximately 20–30 km × 9–15 km in size, acquired in continuous sequence along an orbit of approximately 375–475 km height. From single scenes or mosaics from before and after the earthquake we observe surface displacements of up to almost 10 m and estimate a matching accuracy from PlanetScope data of up to ±0.2 pixels (~ ±0.6 m). This accuracy, the daily revisit anticipated for the PlanetScope constellation for the entire land surface of Earth, and a number of other features, together offer new possibilities for investigating coseismic and other Earth surface displacements and managing related hazards and disasters, and complement existing SAR and optical methods. For comparison and for a better regional overview we also match the coseismic displacements by the 2016 Kaikoura earthquake using Landsat8 and Sentinel-2 data.


2021 ◽  
Vol 13 (21) ◽  
pp. 4465
Author(s):  
Yu Shen ◽  
Xiaoyang Zhang ◽  
Weile Wang ◽  
Ramakrishna Nemani ◽  
Yongchang Ye ◽  
...  

Accurate and timely land surface phenology (LSP) provides essential information for investigating the responses of terrestrial ecosystems to climate changes and quantifying carbon and surface energy cycles on the Earth. LSP has been widely investigated using daily Visible Infrared Imaging Radiometer Suite (VIIRS) or Moderate Resolution Imaging Spectroradiometer (MODIS) observations, but the resultant phenometrics are frequently influenced by surface heterogeneity and persistent cloud contamination in the time series observations. Recently, LSP has been derived from Landsat-8 and Sentinel-2 time series providing detailed spatial pattern, but the results are of high uncertainties because of poor temporal resolution. With the availability of data from Advanced Baseline Imager (ABI) onboard a new generation of geostationary satellites that observe the earth every 10–15 min, daily cloud-free time series could be obtained with high opportunities. Therefore, this study investigates the generation of synthetic high spatiotemporal resolution time series by fusing the harmonized Landsat-8 and Sentinel-2 (HLS) time series with the temporal shape of ABI data for monitoring field-scale (30 m) LSP. The algorithm is verified by detecting the timings of greenup and senescence onsets around north Wisconsin/Michigan states, United States, where cloud cover is frequent during spring rainy season. The LSP detections from HLS-ABI are compared with those from HLS or ABI alone and are further evaluated using PhenoCam observations. The result indicates that (1) ABI could provide ~3 times more high-quality observations than HLS around spring greenup onset; (2) the greenup and senescence onsets derived from ABI and HLS-ABI are spatially consistent and statistically comparable with a median difference less than 1 and 10-days, respectively; (3) greenup and senescence onsets derived from HLS data show sharp boundaries around the orbit-overlapped areas and shifts of ~13 days delay and ~15 days ahead, respectively, relative to HLS-ABI detections; and (4) HLS-ABI greenup and senescence onsets align closely to PhenoCam observations with an absolute average difference of less than 2 days and 5 days, respectively, which are much better than phenology detections from ABI or HLS alone. The result suggests that the proposed approach could be implemented the monitor of 30 m LSP over regions with persistent cloud cover.


2021 ◽  
Author(s):  
Joanna Joiner ◽  
Zachary Fasnacht ◽  
Bo-Cai Gao ◽  
Wenhan Qin

Satellite-based visible and near-infrared imaging of the Earth's surface is generally not performed in moderate to highly cloudy conditions; images that look visibly cloud covered to the human eye are typically discarded. Here, we expand upon previous work that employed machine learning (ML) to estimate underlying land surface reflectances at red, green, and blue (RGB) wavelengths in cloud contaminated spectra using a low spatial resolution satellite spectrometer. Specifically, we apply the ML methodology to a case study at much higher spatial resolution with the Hyperspectral Imager for the Coastal Ocean (HICO) that flew on the International Space Station (ISS). HICO spatial sampling is of the order of 90 m. The purpose of our case study is to test whether high spatial resolution features can be captured using multi-spectral imaging in lightly cloudy and overcast conditions. We selected one clear and one cloudy image over a portion ofthe panhandle coastline of Florida to demonstrate that land features are partially recoverable in overcast conditions. Many high contrast features are well recovered in the presence of optically thin clouds. However, some of the low contrast features, such as narrow roads, are smeared out in the heavily clouded part of the reconstructed image. This case study demonstrates that our approach may be useful for many science and applications that are being developed for current and upcoming satellite missions including precision agriculture and natural vegetation analysis, water quality assessment as well as disturbance, change, hazard, and disaster detection.


Sign in / Sign up

Export Citation Format

Share Document