scholarly journals Research on Event-based Geospatial Data Updating

2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Zhao Zhou ◽  
Qun Sun ◽  
Xiaohua Lyu

<p><strong>Abstract.</strong> How to update the geospatial data timely and accurately has become the focus of surveying and mapping. However, an efficient updating system has not been set up so far. Still the updating operations depend on human-computer interaction, which is less efficient, labour-consuming and prone to error. Accordingly, this paper proposes a new event-based updating method of geospatial data in order to improve the automation and intelligence of data updating. The main contents of the paper are as follows:</p><p>On the basis of the five classical categories of spatio-temporal change typology, the paper proposes a new classification which includes create, transform, death, disappear, reappear, split,divide,combine,merge and so on. The above new classification of spatio-temporal change type is more compatible with geospatial data updating.</p><p>The paper proposes a new conception about the life cycle of geospatial features which simulates spatio-temporal changing process of the geospatial entity on the world. The life cycle of geospatial features is composed of three stages: emergence, existence and death. The rules of the above life cycle of geospatial features are also set up.</p><p>The paper gives a definition of geographical events and also sets up the conceptual model of geographical eventswhich is composed of time, location, geospatial feature, geographical event type and procedure. To better meet the demand of geospatial data updating, the geographical events are also reclassified into create event, transform event,death event, disappear event, reappear event, evolution event, split event, divide event, combine event and merge event.</p><p>The paper suggests that homologous geographical feature matching and change detecting should be used to deduce spatio-temporal change type and extract geographical events. The thesis intends to set up an up-to-down matching pattern with four layers so as to improve the efficiency and accuracy of matching. Buffer area matching and attribute matching are used to match the point features of the same names. Both the minimum bounding rectangle overlap area and discrete Fréchet distance are used to match the line features of the same names. As for area features, feature overlapping area and Hausdorff distance are employed in matching. In addition, the thesis proposes to use XML to organize and store dynamic updating operation.</p><p>Under the guidance of event-based geospatial data updating method, the related prototype system has been established and tested in the updating experiments of residence community and roads.</p>

2012 ◽  
Vol 204-208 ◽  
pp. 2721-2725
Author(s):  
Hua Ji Zhu ◽  
Hua Rui Wu

Village land continually changes in the real world. In order to keep the data up-to-date, data producers need update the data frequently. When the village land data are updated, the update information must be dispensed to the end-users to keep their client-databases current. In the real world, village land changes in many forms. Identifying the change type of village land (i.e. captures the semantics of change) and representing them in the data world can help end-users understand the change commonly and be convenient for end-users to integrate these change information into their databases. This work focuses on the model of the spatio-temporal change. A three-tuple model CAR for representing the spatio-temporal change is proposed based on the village land feature set before change and the village land feature set after change, change type and rules. In this model, the C denotes the change type. A denotes the attribute set; R denotes the judging rules of change type. The rule is described by the IF-THEN expressions. By the operations between R and A, the C is distinguished. This model overcomes the limitations of current methods. And more, the rules in this model can be easy realized in computer program.


2021 ◽  
Vol 9 (5) ◽  
pp. 467
Author(s):  
Mostafa Farrag ◽  
Gerald Corzo Perez ◽  
Dimitri Solomatine

Many grid-based spatial hydrological models suffer from the complexity of setting up a coherent spatial structure to calibrate such a complex, highly parameterized system. There are essential aspects of model-building to be taken into account: spatial resolution, the routing equation limitations, and calibration of spatial parameters, and their influence on modeling results, all are decisions that are often made without adequate analysis. In this research, an experimental analysis of grid discretization level, an analysis of processes integration, and the routing concepts are analyzed. The HBV-96 model is set up for each cell, and later on, cells are integrated into an interlinked modeling system (Hapi). The Jiboa River Basin in El Salvador is used as a case study. The first concept tested is the model structure temporal responses, which are highly linked to the runoff dynamics. By changing the runoff generation model description, we explore the responses to events. Two routing models are considered: Muskingum, which routes the runoff from each cell following the river network, and Maxbas, which routes the runoff directly to the outlet. The second concept is the spatial representation, where the model is built and tested for different spatial resolutions (500 m, 1 km, 2 km, and 4 km). The results show that the spatial sensitivity of the resolution is highly linked to the routing method, and it was found that routing sensitivity influenced the model performance more than the spatial discretization, and allowing for coarser discretization makes the model simpler and computationally faster. Slight performance improvement is gained by using different parameters’ values for each cell. It was found that the 2 km cell size corresponds to the least model error values. The proposed hydrological modeling codes have been published as open-source.


2021 ◽  
Vol 13 (9) ◽  
pp. 4651
Author(s):  
Ming-Lun Alan Fong

The analysis of ventilation strategies is fundamentally affected by regional climate conditions and local cost databases, in terms of energy consumption, CO2 emission and cost-effective analysis. A systematic approach is covered in this paper to estimate a local economic and environmental impact on a medium-sized space located in two regions during supply-and-installation and operation phases. Three ventilation strategies, including mixing ventilation (MV), displacement ventilation (DV) and stratum ventilation (SV) were applied to medium-sized air-conditioned space with this approach. The trend of the results for three ventilation systems in the life cycle assessment (LCA) and life cycle cost (LCC) analysis is SV < DV < MV. The result of CO2 emission and regional LCC shows that SV is the lowest one in both regional studies. In comparison with the Hong Kong Special Administrative Region (HKSAR) during 20 Service years, the case analysis demonstrates that the percentage differences in LCC analysis of MV, DV & SV in Guangdong are less than 20.5%, 19.4% and 18.82% respectively. Their CO2 emission of MV, DV and SV in Guangdong are more than HKSAR in 10.69%, 11.22% and 12.05%, respectively. The present study could provide information about regional effects in the LCA and LCC analysis of three ventilation strategies emissions, and thereby help set up models for decision-making on high efficiency and cost-effective ventilation strategy plans.


2019 ◽  
Vol 20 (4) ◽  
pp. 386-409
Author(s):  
Elmar Spiegel ◽  
Thomas Kneib ◽  
Fabian Otto-Sobotka

Spatio-temporal models are becoming increasingly popular in recent regression research. However, they usually rely on the assumption of a specific parametric distribution for the response and/or homoscedastic error terms. In this article, we propose to apply semiparametric expectile regression to model spatio-temporal effects beyond the mean. Besides the removal of the assumption of a specific distribution and homoscedasticity, with expectile regression the whole distribution of the response can be estimated. For the use of expectiles, we interpret them as weighted means and estimate them by established tools of (penalized) least squares regression. The spatio-temporal effect is set up as an interaction between time and space either based on trivariate tensor product P-splines or the tensor product of a Gaussian Markov random field and a univariate P-spline. Importantly, the model can easily be split up into main effects and interactions to facilitate interpretation. The method is presented along the analysis of spatio-temporal variation of temperatures in Germany from 1980 to 2014.


2016 ◽  
Vol 100 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Grazia Caradonna ◽  
Antonio Novelli ◽  
Eufemia Tarantino ◽  
Raffaela Cefalo ◽  
Umberto Fratino

Abstract Mediterranean regions have experienced significant soil degradation over the past decades. In this context, careful land observation using satellite data is crucial for understanding the long-term usage patterns of natural resources and facilitating their sustainable management to monitor and evaluate the potential degradation. Given the environmental and political interest on this problem, there is urgent need for a centralized repository and mechanism to share geospatial data, information and maps of land change. Geospatial data collecting is one of the most important task for many users because there are significant barriers in accessing and using data. This limit could be overcome by implementing a WebGIS through a combination of existing free and open source software for geographic information systems (FOSS4G). In this paper we preliminary discuss methods for collecting raster data in a geodatabase by processing open multi-temporal and multi-scale satellite data aimed at retrieving indicators for land degradation phenomenon (i.e. land cover/land use analysis, vegetation indices, trend analysis, etc.). Then we describe a methodology for designing a WebGIS framework in order to disseminate information through maps for territory monitoring. Basic WebGIS functions were extended with the help of POSTGIS database and OpenLayers libraries. Geoserver was customized to set up and enhance the website functions developing various advanced queries using PostgreSQL and innovative tools to carry out efficiently multi-layer overlay analysis. The end-product is a simple system that provides the opportunity not only to consult interactively but also download processed remote sensing data.


Sign in / Sign up

Export Citation Format

Share Document