scholarly journals GEOMETRY-BASED POINT CLOUD CLASSIFICATION USING HEIGHT DISTRIBUTIONS

Author(s):  
F. Politz ◽  
M. Sester ◽  
C. Brenner

Abstract. Semantic segmentation is one of the main steps in the processing chain for Airborne Laser Scanning (ALS) point clouds, but it is also one of the most labour intensive steps, as it requires many labelled examples to train a classifier. National mapping agencies (NMAs) have to acquire nationwide ALS data every couple of years for their duties. Having point clouds cover different terrains such as flat or mountainous regions, a classifier often requires a refinement using additional data from those specific terrains. In this study, we present an algorithm, which is able to classify point clouds of similar terrain types without requiring any additional training data and which is still able to achieve overall F1-Scores of over 90% in most setups. Our algorithm uses up to two height distributions within a single cell in a rasterized point cloud. For each distribution, the empirical mean and standard deviation are calculated, which are the input for a Convolutional Neural Network (CNN) classifier. Consequently, our approach only requires the geometry of point clouds, which enables also the usage of the same network structure for point clouds from other sensor systems such as Dense Image Matching. Since the mean ground level varies with the observed area, we also examined five different normalisation methods for our input in order to reduce the ground influence on the point clouds and thus increase its transferability towards other datasets. We test our trained networks on four different tests sets with the classes’ ground, building, water, non-ground and bridge.

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2161 ◽  
Author(s):  
Arnadi Murtiyoso ◽  
Pierre Grussenmeyer

3D heritage documentation has seen a surge in the past decade due to developments in reality-based 3D recording techniques. Several methods such as photogrammetry and laser scanning are becoming ubiquitous amongst architects, archaeologists, surveyors, and conservators. The main result of these methods is a 3D representation of the object in the form of point clouds. However, a solely geometric point cloud is often insufficient for further analysis, monitoring, and model predicting of the heritage object. The semantic annotation of point clouds remains an interesting research topic since traditionally it requires manual labeling and therefore a lot of time and resources. This paper proposes an automated pipeline to segment and classify multi-scalar point clouds in the case of heritage object. This is done in order to perform multi-level segmentation from the scale of a historical neighborhood up until that of architectural elements, specifically pillars and beams. The proposed workflow involves an algorithmic approach in the form of a toolbox which includes various functions covering the semantic segmentation of large point clouds into smaller, more manageable and semantically labeled clusters. The first part of the workflow will explain the segmentation and semantic labeling of heritage complexes into individual buildings, while a second part will discuss the use of the same toolbox to segment the resulting buildings further into architectural elements. The toolbox was tested on several historical buildings and showed promising results. The ultimate intention of the project is to help the manual point cloud labeling, especially when confronted with the large training data requirements of machine learning-based algorithms.


Author(s):  
Y. Xie ◽  
K. Schindler ◽  
J. Tian ◽  
X. X. Zhu

Abstract. Deep learning models achieve excellent semantic segmentation results for airborne laser scanning (ALS) point clouds, if sufficient training data are provided. Increasing amounts of annotated data are becoming publicly available thanks to contributors from all over the world. However, models trained on a specific dataset typically exhibit poor performance on other datasets. I.e., there are significant domain shifts, as data captured in different environments or by distinct sensors have different distributions. In this work, we study this domain shift and potential strategies to mitigate it, using two popular ALS datasets: the ISPRS Vaihingen benchmark from Germany and the LASDU benchmark from China. We compare different training strategies for cross-city ALS point cloud semantic segmentation. In our experiments, we analyse three factors that may lead to domain shift and affect the learning: point cloud density, LiDAR intensity, and the role of data augmentation. Moreover, we evaluate a well-known standard method of domain adaptation, deep CORAL (Sun and Saenko, 2016). In our experiments, adapting the point cloud density and appropriate data augmentation both help to reduce the domain gap and improve segmentation accuracy. On the contrary, intensity features can bring an improvement within a dataset, but deteriorate the generalisation across datasets. Deep CORAL does not further improve the accuracy over the simple adaptation of density and data augmentation, although it can mitigate the impact of improperly chosen point density, intensity features, and further dataset biases like lack of diversity.


Author(s):  
M. Kölle ◽  
D. Laupheimer ◽  
V. Walter ◽  
N. Haala ◽  
U. Soergel

Abstract. Semantic interpretation of multi-modal datasets is of great importance in many domains of geospatial data analysis. However, when training models for automated semantic segmentation, labeled training data is required and in case of multi-modality for each representation form of the scene. To completely avoid the time-consuming and cost-intensive involvement of an expert in the annotation procedure, we propose an Active Learning (AL) pipeline where a Random Forest classifier selects a subset of points sufficient for training and where necessary labels are received from the crowd. In this AL loop, we aim on coupled semantic segmentation of an Airborne Laser Scanning (ALS) point cloud and the corresponding 3D textured mesh generated from LiDAR data and imagery in a hybrid manner. Within this work we pursue two main objectives: i) We evaluate the performance of the AL pipeline applied to an ultra-high resolution ALS point cloud and a derived textured mesh (both benchmark datasets are available at https://ifpwww.ifp.uni-stuttgart.de/benchmark/hessigheim/default.aspx). ii) We investigate the capabilities of the crowd regarding interpretation of 3D geodata and observed that the crowd performs about 3 percentage points better when labeling meshes compared to point clouds. We additionally demonstrate that labels received solely by the crowd can power a machine learning system only differing in Overall Accuracy by less than 2 percentage points for the point cloud and less than 3 percentage points for the mesh, compared to using the completely labeled training pool. For deriving this sparse training set, we ask the crowd to label 0.25 % of available training points, resulting in costs of 190 $.


2020 ◽  
Vol 25 ◽  
pp. 545-560
Author(s):  
Gustaf Uggla ◽  
Milan Horemuz

Capturing geographic information from a mobile platform, a method known as mobile mapping, is today one of the best methods for rapid and safe data acquisition along roads and railroads. The digitalization of society and the use of information technology in the construction industry is increasing the need for structured geometric and semantic information about the built environment. This puts an emphasis on automatic object identification in data such as point clouds. Most point clouds are accompanied by RGB images, and a recent literature review showed that these are possibly underutilized for object identification. This article presents a method (image-based point cloud segmentations – IBPCS) where semantic segmentation of images is used to filter point clouds, which drastically reduces the number of points that have to be considered in object identification and allows simpler algorithms to be used. An example implementation where IBPCS is used to identify roadside game fences along a country road is provided, and the accuracy and efficiency of the method is compared to the performance of PointNet, which is a neural network designed for end-to-end point cloud classification and segmentation. The results show that our implementation of IBPCS outperforms PointNet for the given task. The strengths of IBPCS are the ability to filter point clouds based on visual appearance and that it efficiently can process large data sets. This makes the method a suitable candidate for object identification along rural roads and railroads, where the objects of interest are scattered over long distances.


Author(s):  
F. Politz ◽  
M. Sester

<p><strong>Abstract.</strong> Over the past years, the algorithms for dense image matching (DIM) to obtain point clouds from aerial images improved significantly. Consequently, DIM point clouds are now a good alternative to the established Airborne Laser Scanning (ALS) point clouds for remote sensing applications. In order to derive high-level applications such as digital terrain models or city models, each point within a point cloud must be assigned a class label. Usually, ALS and DIM are labelled with different classifiers due to their varying characteristics. In this work, we explore both point cloud types in a fully convolutional encoder-decoder network, which learns to classify ALS as well as DIM point clouds. As input, we project the point clouds onto a 2D image raster plane and calculate the minimal, average and maximal height values for each raster cell. The network then differentiates between the classes ground, non-ground, building and no data. We test our network in six training setups using only one point cloud type, both point clouds as well as several transfer-learning approaches. We quantitatively and qualitatively compare all results and discuss the advantages and disadvantages of all setups. The best network achieves an overall accuracy of 96<span class="thinspace"></span>% in an ALS and 83<span class="thinspace"></span>% in a DIM test set.</p>


Author(s):  
Y. Cao ◽  
M. Previtali ◽  
M. Scaioni

Abstract. In the wake of the success of Deep Learning Networks (DLN) for image recognition, object detection, shape classification and semantic segmentation, this approach has proven to be both a major breakthrough and an excellent tool in point cloud classification. However, understanding how different types of DLN achieve still lacks. In several studies the output of segmentation/classification process is compared against benchmarks, but the network is treated as a “black-box” and intermediate steps are not deeply analysed. Specifically, here the following questions are discussed: (1) what exactly did DLN learn from a point cloud? (2) On the basis of what information do DLN make decisions? To conduct such a quantitative investigation of these DLN applied to point clouds, this paper investigates the visual interpretability for the decision-making process. Firstly, we introduce a reconstruction network able to reconstruct and visualise the learned features, in order to face with question (1). Then, we propose 3DCAM to indicate the discriminative point cloud regions used by these networks to identify that category, thus dealing with question (2). Through answering the above two questions, the paper would like to offer some initial solutions to better understand the application of DLN to point clouds.


2018 ◽  
Vol 10 (8) ◽  
pp. 1192 ◽  
Author(s):  
Chen-Chieh Feng ◽  
Zhou Guo

The automating classification of point clouds capturing urban scenes is critical for supporting applications that demand three-dimensional (3D) models. Achieving this goal, however, is met with challenges because of the varying densities of the point clouds and the complexity of the 3D data. In order to increase the level of automation in the point cloud classification, this study proposes a segment-based parameter learning method that incorporates a two-dimensional (2D) land cover map, in which a strategy of fusing the 2D land cover map and the 3D points is first adopted to create labelled samples, and a formalized procedure is then implemented to automatically learn the following parameters of point cloud classification: the optimal scale of the neighborhood for segmentation, optimal feature set, and the training classifier. It comprises four main steps, namely: (1) point cloud segmentation; (2) sample selection; (3) optimal feature set selection; and (4) point cloud classification. Three datasets containing the point cloud data were used in this study to validate the efficiency of the proposed method. The first two datasets cover two areas of the National University of Singapore (NUS) campus while the third dataset is a widely used benchmark point cloud dataset of Oakland, Pennsylvania. The classification parameters were learned from the first dataset consisting of a terrestrial laser-scanning data and a 2D land cover map, and were subsequently used to classify both of the NUS datasets. The evaluation of the classification results showed overall accuracies of 94.07% and 91.13%, respectively, indicating that the transition of the knowledge learned from one dataset to another was satisfactory. The classification of the Oakland dataset achieved an overall accuracy of 97.08%, which further verified the transferability of the proposed approach. An experiment of the point-based classification was also conducted on the first dataset and the result was compared to that of the segment-based classification. The evaluation revealed that the overall accuracy of the segment-based classification is indeed higher than that of the point-based classification, demonstrating the advantage of the segment-based approaches.


Author(s):  
E. Barnefske ◽  
H. Sternberg

<p><strong>Abstract.</strong> Point clouds give a very detailed and sometimes very accurate representation of the geometry of captured objects. In surveying, point clouds captured with laser scanners or camera systems are an intermediate result that must be processed further. Often the point cloud has to be divided into regions of similar types (object classes) for the next process steps. These classifications are very time-consuming and cost-intensive compared to acquisition. In order to automate this process step, conventional neural networks (ConvNet), which take over the classification task, are investigated in detail. In addition to the network architecture, the classification performance of a ConvNet depends on the training data with which the task is learned. This paper presents and evaluates the point clould classification tool (PCCT) developed at HCU Hamburg. With the PCCT, large point cloud collections can be semi-automatically classified. Furthermore, the influence of erroneous points in three-dimensional point clouds is investigated. The network architecture PointNet is used for this investigation.</p>


Author(s):  
J. Balado ◽  
P. van Oosterom ◽  
L. Díaz-Vilariño ◽  
P. Arias

Abstract. Although point clouds are characterized as a type of unstructured data, timestamp attribute can structure point clouds into scanlines and shape them into a time signal. The present work studies the transformation of the street point cloud into a time signal based on the Z component for the semantic segmentation using Long Short-Term Memory (LSTM) networks. The experiment was conducted on the point cloud of a real case study. Several training sessions were performed changing the Level of Detail of the classification (coarse level with 3 classes and fine level with 11 classes), two levels of network depth and the use of weighting for the improvement of classes with low number of points. The results showed high accuracy, reaching at best 97.3% in the classification with 3 classes (ground, buildings, and objects) and 95.7% with 11 classes. The distribution of the success rates was not the same for all classes. The classes with the highest number of points obtained better results than the others. The application of weighting improved the classes with few points at the expense of the classes with more points. Increasing the number of hidden layers was shown as a preferable alternative to weighting. Given the high success rates and a behaviour of the LSTM consistent with other Neural Networks in point cloud processing, it is concluded that the LSTM is a feasible alternative for the semantic segmentation of point clouds transformed into time signals.


Sign in / Sign up

Export Citation Format

Share Document