scholarly journals SEMANTIC LABELLING OF ROAD FURNITURE IN MOBILE LASER SCANNING DATA

Author(s):  
F. Li ◽  
S. Oude Elberink ◽  
G. Vosselman

Road furniture semantic labelling is vital for large scale mapping and autonomous driving systems. Much research has been investigated on road furniture interpretation in both 2D images and 3D point clouds. Precise interpretation of road furniture in mobile laser scanning data still remains unexplored. In this paper, a novel method is proposed to interpret road furniture based on their logical relations and functionalities. Our work represents the most detailed interpretation of road furniture in mobile laser scanning data. 93.3 % of poles are correctly extracted and all of them are correctly recognised. 94.3 % of street light heads are detected and 76.9 % of them are correctly identified. Despite errors arising from the recognition of other components, our framework provides a promising solution to automatically map road furniture at a detailed level in urban environments.


2019 ◽  
Vol 11 (12) ◽  
pp. 1453 ◽  
Author(s):  
Shanxin Zhang ◽  
Cheng Wang ◽  
Lili Lin ◽  
Chenglu Wen ◽  
Chenhui Yang ◽  
...  

Maintaining the high visual recognizability of traffic signs for traffic safety is a key matter for road network management. Mobile Laser Scanning (MLS) systems provide efficient way of 3D measurement over large-scale traffic environment. This paper presents a quantitative visual recognizability evaluation method for traffic signs in large-scale traffic environment based on traffic recognition theory and MLS 3D point clouds. We first propose the Visibility Evaluation Model (VEM) to quantitatively describe the visibility of traffic sign from any given viewpoint, then we proposed the concept of visual recognizability field and Traffic Sign Visual Recognizability Evaluation Model (TSVREM) to measure the visual recognizability of a traffic sign. Finally, we present an automatic TSVREM calculation algorithm for MLS 3D point clouds. Experimental results on real MLS 3D point clouds show that the proposed method is feasible and efficient.



Author(s):  
Bisheng Yang ◽  
Yuan Liu ◽  
Fuxun Liang ◽  
Zhen Dong

High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.



Author(s):  
Shenglian lu ◽  
Guo Li ◽  
Jian Wang

Tree skeleton could be useful to agronomy researchers because the skeleton describes the shape and topological structure of a tree. The phenomenon of organs’ mutual occlusion in fruit tree canopy is usually very serious, this should result in a large amount of data missing in directed laser scanning 3D point clouds from a fruit tree. However, traditional approaches can be ineffective and problematic in extracting the tree skeleton correctly when the tree point clouds contain occlusions and missing points. To overcome this limitation, we present a method for accurate and fast extracting the skeleton of fruit tree from laser scanner measured 3D point clouds. The proposed method selects the start point and endpoint of a branch from the point clouds by user’s manual interaction, then a backward searching is used to find a path from the 3D point cloud with a radius parameter as a restriction. The experimental results in several kinds of fruit trees demonstrate that our method can extract the skeleton of a leafy fruit tree with highly accuracy.



Author(s):  
J. Gehrung ◽  
M. Hebel ◽  
M. Arens ◽  
U. Stilla

Mobile laser scanning has not only the potential to create detailed representations of urban environments, but also to determine changes up to a very detailed level. An environment representation for change detection in large scale urban environments based on point clouds has drawbacks in terms of memory scalability. Volumes, however, are a promising building block for memory efficient change detection methods. The challenge of working with 3D occupancy grids is that the usual raycasting-based methods applied for their generation lead to artifacts caused by the traversal of unfavorable discretized space. These artifacts have the potential to distort the state of voxels in close proximity to planar structures. In this work we propose a raycasting approach that utilizes knowledge about planar surfaces to completely prevent this kind of artifacts. To demonstrate the capabilities of our approach, a method for the iterative volumetric approximation of point clouds that allows to speed up the raycasting by 36 percent is proposed.



Author(s):  
G. Stavropoulou ◽  
G. Tzovla ◽  
A. Georgopoulos

Over the past decade, large-scale photogrammetric products have been extensively used for the geometric documentation of cultural heritage monuments, as they combine metric information with the qualities of an image document. Additionally, the rising technology of terrestrial laser scanning has enabled the easier and faster production of accurate digital surface models (DSM), which have in turn contributed to the documentation of heavily textured monuments. However, due to the required accuracy of control points, the photogrammetric methods are always applied in combination with surveying measurements and hence are dependent on them. Along this line of thought, this paper explores the possibility of limiting the surveying measurements and the field work necessary for the production of large-scale photogrammetric products and proposes an alternative method on the basis of which the necessary control points instead of being measured with surveying procedures are chosen from a dense and accurate point cloud. Using this point cloud also as a surface model, the only field work necessary is the scanning of the object and image acquisition, which need not be subject to strict planning. To evaluate the proposed method an algorithm and the complementary interface were produced that allow the parallel manipulation of 3D point clouds and images and through which single image procedures take place. The paper concludes by presenting the results of a case study in the ancient temple of Hephaestus in Athens and by providing a set of guidelines for implementing effectively the method.



Author(s):  
A. Karagianni

Abstract. Technological advances in the field of information acquisition have led to the development of various techniques regarding building documentation. Among the proposed methods, acquisition of data without being in direct physical contact with the features under investigation could provide valuable information especially in the case of buildings or areas presenting a high cultural value. Satellite or ground-based remote sensing techniques could contribute to the protection, conservation and restoration of cultural heritage buildings, as well as in the interpretation and monitoring of their surrounding area. The increasing interest in the generation of 3D facade models for documentation of the built environment has made laser scanning a valuable tool for 3D data collection. Through the generation of dense 3D point clouds, digitization of building facades could be achieved, offering data that could be used for further processing. Satellite imagery could also contribute to this direction, extending the monitoring possibilities of the buildings’ surrounding area or even providing information regarding change detection in large-scale cultural landscapes. This paper presents the study of a mansion house built in the middle of the 18th century in northwestern Greece, using terrestrial laser scanning techniques for facade documentation, as well as satellite imagery for monitoring and interpretation purposes. The scanning process included multiple external scans of the main facade of the building which were registered using artificial targets in order to form a single colored 3D model. Further process resulted in a model that offers measurement possibilities valuable to future plans and designs for preservation and restoration. Digital processing of satellite imagery provided the extraction of additional enhanced data regarding the physiognomy of the surrounding area.



Author(s):  
Bisheng Yang ◽  
Yuan Liu ◽  
Fuxun Liang ◽  
Zhen Dong

High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.



Author(s):  
Jian Wu ◽  
Qingxiong Yang

In this paper, we study the semantic segmentation of 3D LiDAR point cloud data in urban environments for autonomous driving, and a method utilizing the surface information of the ground plane was proposed. In practice, the resolution of a LiDAR sensor installed in a self-driving vehicle is relatively low and thus the acquired point cloud is indeed quite sparse. While recent work on dense point cloud segmentation has achieved promising results, the performance is relatively low when directly applied to sparse point clouds. This paper is focusing on semantic segmentation of the sparse point clouds obtained from 32-channel LiDAR sensor with deep neural networks. The main contribution is the integration of the ground information which is used to group ground points far away from each other. Qualitative and quantitative experiments on two large-scale point cloud datasets show that the proposed method outperforms the current state-of-the-art.



2021 ◽  
Vol 13 (2) ◽  
pp. 219
Author(s):  
Yufu Zang ◽  
Fancong Meng ◽  
Roderik Lindenbergh ◽  
Linh Truong-Hong ◽  
Bijun Li

Mobile laser scanning (MLS) systems are often used to efficiently acquire reference data covering a large-scale scene. The terrestrial laser scanner (TLS) can easily collect high point density data of local scene. Localization of static TLS scans in mobile mapping point clouds can afford detailed geographic information for many specific tasks especially in autonomous driving and robotics. However, large-scale MLS reference data often have a huge amount of data and many similar scene data; significant differences may exist between MLS and TLS data. To overcome these challenges, this paper presents a novel deep neural network-based localization method in urban environment, divided by place recognition and pose refinement. Firstly, simple, reliable primitives, cylinder-like features were extracted to describe the global features of a local urban scene. Then, a probabilistic framework is applied to estimate a similarity between TLS and MLS data, under a stable decision-making strategy. Based on the results of a place recognition, we design a patch-based convolution neural network (CNN) (point-based CNN is used as kernel) for pose refinement. The input data unit is the batch consisting of several patches. One patch goes through three main blocks: feature extraction block (FEB), the patch correspondence search block and the pose estimation block. Finally, a global refinement was proposed to tune the predicted transformation parameters to realize localization. The research aim is to find the most similar scene of MLS reference data compared with the local TLS scan, and accurately estimate the transformation matrix between them. To evaluate the performance, comprehensive experiments were carried out. The experiments demonstrate that the proposed method has good performance in terms of efficiency, i.e., the runtime of processing a million points is 5 s, robustness, i.e., the success rate of place recognition is 100% in the experiments, accuracy, i.e., the mean rotation and translation error is (0.24 deg, 0.88 m) and (0.03 deg, 0.06 m) on TU Delft campus and Shanghai urban datasets, respectively, and outperformed some commonly used methods (e.g., iterative closest point (ICP), coherent point drift (CPD), random sample consensus (RANSAC)-based method).



Author(s):  
Joachim Gehrung ◽  
Marcus Hebel ◽  
Michael Arens ◽  
Uwe Stilla

The generation of 3D city models is a very active field of research. Modeling environments as point clouds may be fast, but has disadvantages. These are easily solvable by using volumetric representations, especially when considering selective data acquisition, change detection and fast changing environments. Therefore, this paper proposes a framework for the volumetric modeling and visualization of large scale urban environments. Beside an architecture and the right mix of algorithms for the task, two compression strategies for volumetric models as well as a data quality based approach for the import of range measurements are proposed. The capabilities of the framework are shown on a mobile laser scanning dataset of the Technical University of Munich. Furthermore the loss of the compression techniques is evaluated and their memory consumption is compared to that of raw point clouds. The presented results show that generation, storage and real-time rendering of even large urban models are feasible, even with off-the-shelf hardware.



Sign in / Sign up

Export Citation Format

Share Document