scholarly journals A NOVEL TIE POINT BASED STRATEGY FOR POINT CLOUD AND IMAGERY DATA FINE REGISTRATION

Author(s):  
M. Eslami ◽  
M. Saadatseresht

Abstract. Laser scanner generated point cloud and photogrammetric imagery are complimentary data for many applications and services. Misalignment between imagery and point cloud data is a common problem, which causes to inaccurate products and procedures. In this paper, a novel strategy is proposed for coarse to fine registration between close-range imagery and terrestrial laser scanner point cloud data. In such a case, tie points are extracted and matched from photogrammetric imagery and preprocessing is applied on generated tie points to eliminate non-robust ones. At that time, for every tie point, two neighbor pixels are selected and matched in all overlapped images. After that, coarse interior orientation parameters (IOPs) and exterior orientation parameters (EOPs) of the images are employed to reconstruct object space points of the tie point and its two neighbor pixels. Then, corresponding nearest points to the object space photogrammetric points are estimated in the point cloud data. Estimated three point cloud points are used to calculate a plane and its normal vector. Theoretically, every object space tie point should be located on the aforementioned plane, which is used as conditional equation alongside the collinearity equation to fine register the photogrammetric imagery network. Attained root mean square error (RMSE) results on check points, have been shown less than 2.3 pixels, which shows the accuracy, completeness and robustness of the proposed method.

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 317
Author(s):  
Mehrdad Eslami ◽  
Mohammad Saadatseresht

Cameras and laser scanners are complementary tools for a 2D/3D information generation. Systematic and random errors cause the misalignment of the multi-sensor imagery and point cloud data. In this paper, a novel feature-based approach is proposed for imagery and point cloud fine registration. The tie points and its two neighbor pixels are matched in the overlap images, which are intersected in the object space to create the differential tie plane. A preprocessing is applied to the corresponding tie points and non-robust ones are removed. Initial coarse Exterior Orientation Parameters (EOPs), Interior Orientation Parameters (IOPs), and Additional Parameters (APs) are used to transform tie plane points to the object space. Then, the nearest points of the point cloud data to the transformed tie plane points are estimated. These estimated points are used to calculate Directional Vectors (DV) of the differential planes. As a constraint equation along with the collinearity equation, each object space tie point is forced to be located on the point cloud differential plane. Two different indoor and outdoor experimental data are used to assess the proposed approach. Achieved results show about 2.5 pixels errors on checkpoints. Such results demonstrated the robustness and practicality of the proposed approach.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 263
Author(s):  
Munan Yuan ◽  
Xiru Li ◽  
Longle Cheng ◽  
Xiaofeng Li ◽  
Haibo Tan

Alignment is a critical aspect of point cloud data (PCD) processing, and we propose a coarse-to-fine registration method based on bipartite graph matching in this paper. After data pre-processing, the registration progress can be detailed as follows: Firstly, a top-tail (TT) strategy is designed to normalize and estimate the scale factor of two given PCD sets, which can combine with the coarse alignment process flexibly. Secondly, we utilize the 3D scale-invariant feature transform (3D SIFT) method to extract point features and adopt fast point feature histograms (FPFH) to describe corresponding feature points simultaneously. Thirdly, we construct a similarity weight matrix of the source and target point data sets with bipartite graph structure. Moreover, the similarity weight threshold is used to reject some bipartite graph matching error-point pairs, which determines the dependencies of two data sets and completes the coarse alignment process. Finally, we introduce the trimmed iterative closest point (TrICP) algorithm to perform fine registration. A series of extensive experiments have been conducted to validate that, compared with other algorithms based on ICP and several representative coarse-to-fine alignment methods, the registration accuracy and efficiency of our method are more stable and robust in various scenes and are especially more applicable with scale factors.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3908 ◽  
Author(s):  
Pavan Kumar B. N. ◽  
Ashok Kumar Patil ◽  
Chethana B. ◽  
Young Ho Chai

Acquisition of 3D point cloud data (PCD) using a laser scanner and aligning it with a video frame is a new approach that is efficient for retrofitting comprehensive objects in heavy pipeline industrial facilities. This work contributes a generic framework for interactive retrofitting in a virtual environment and an unmanned aerial vehicle (UAV)-based sensory setup design to acquire PCD. The framework adopts a 4-in-1 alignment using a point cloud registration algorithm for a pre-processed PCD alignment with the partial PCD, and frame-by-frame registration method for video alignment. This work also proposes a virtual interactive retrofitting framework that uses pre-defined 3D computer-aided design models (CAD) with a customized graphical user interface (GUI) and visualization of a 4-in-1 aligned video scene from a UAV camera in a desktop environment. Trials were carried out using the proposed framework in a real environment at a water treatment facility. A qualitative and quantitative study was conducted to evaluate the performance of the proposed generic framework from participants by adopting the appropriate questionnaire and retrofitting task-oriented experiment. Overall, it was found that the proposed framework could be a solution for interactive 3D CAD model retrofitting on a combination of UAV sensory setup-acquired PCD and real-time video from the camera in heavy industrial facilities.


2014 ◽  
Vol 644-650 ◽  
pp. 2656-2660
Author(s):  
Yao Cheng ◽  
Guang Xue Chen ◽  
Chen Chen ◽  
Jiang Ping Yuan

In the process of 3D printing, stereo image acquisition is the basis and premise of 3D modeling so that it’s important to study the acquisition methods and techniques. This paper will study the process of point cloud data acquisition of a hand model by using handheld laser scanner REVscan, and processed by the reverse engineering software Geomagic Studio. Using the object model captured, we can greatly improve the efficiency and accuracy, as well as reduce the cycle of the 3D printing. This will help achieve the transmission of 3D printing data without geographical restrictions, in which truly realize the concept "What You See Is What You Get".


2013 ◽  
Vol 405-408 ◽  
pp. 3032-3036
Author(s):  
Yi Bo Sun ◽  
Xin Qi Zheng ◽  
Zong Ren Jia ◽  
Gang Ai

At present, most of the commercial 3D laser scanning measurement systems do work for a large area and a big scene, but few shows their advantage in the small area or small scene. In order to solve this shortage, we design a light-small mobile 3D laser scanning system, which integrates GPS, INS, laser scanner and digital camera and other sensors, to generate the Point Cloud data of the target through data filtering and fusion. This system can be mounted on airborne or terrestrial small mobile platform and enables to achieve the goal of getting Point Cloud data rapidly and reconstructing the real 3D model. Compared to the existing mobile 3D laser scanning system, the system we designed has high precision but lower cost, smaller hardware and more flexible.


2020 ◽  
Vol 10 (22) ◽  
pp. 8073
Author(s):  
Min Woo Ryu ◽  
Sang Min Oh ◽  
Min Ju Kim ◽  
Hun Hee Cho ◽  
Chang Baek Son ◽  
...  

This study proposes a new method to generate a three-dimensional (3D) geometric representation of an indoor environment by refining and processing an indoor point cloud data (PCD) captured through backpack laser scanners. The proposed algorithm comprises two parts to generate the 3D geometric representation: data refinement and data processing. In the refinement section, the inputted indoor PCD are roughly segmented by applying random sample consensus (RANSAC) to raw data based on an estimated normal vector. Next, the 3D geometric representation is generated by calculating and separating tangent points on segmented PCD. This study proposes a robust algorithm that utilizes the topological feature of the indoor PCD created by a hierarchical data process. The algorithm minimizes the size and the uncertainty of raw PCD caused by the absence of a global navigation satellite system and equipment errors. The result of this study shows that the indoor environment can be converted into 3D geometric representation by applying the proposed algorithm to the indoor PCD.


2019 ◽  
Vol 16 (2) ◽  
pp. 172988141983813
Author(s):  
Haobin Shi ◽  
Meng Xu ◽  
Kao-Shing Hwang ◽  
Chia-Hung Hung

The objective of this article aims at the safety problems where robots and operators are highly coupled in a working space. A method to model an articulated robot manipulator by cylindrical geometries based on partial cloud points is proposed in this article. Firstly, images with point cloud data containing the posture of a robot with five resolution links are captured by a pair of RGB-D cameras. Secondly, the process of point cloud clustering and Gaussian noise filtering is applied to the images to separate the point cloud data of three links from the combined images. Thirdly, an ideal cylindrical model fits the processed point cloud data are segmented by the random sample consensus method such that three joint angles corresponding to three major links are computed. The original method for calculating the normal vector of point cloud data is the cylindrical model segmentation method, but the accuracy of posture measurement is low when the point cloud data is incomplete. To solve this problem, a principal axis compensation method is proposed, which is not affected by number of point cloud cluster data. The original method and the proposed method are used to estimate the three joint angular of the manipulator system in experiments. Experimental results show that the average error is reduced by 27.97%, and the sample standard deviation of the error is reduced by 54.21% compared with the original method for posture measurement. The proposed method is 0.971 piece/s slower than the original method in terms of the image processing velocity. But the proposed method is still feasible, and the purpose of posture measurement is achieved.


Sign in / Sign up

Export Citation Format

Share Document