scholarly journals SEGMENT-BASED LIDAR ODOMETRY FOR LESS STRUCTURED OUTDOOR SCENE

Author(s):  
W. Wu ◽  
C. Chen ◽  
J. Li ◽  
Y. Cong ◽  
B. Yang

Abstract. Accurate registration of sparse sequential point clouds data frames acquired by a 3D light detection and ranging (LiDAR) sensor like VLP-16 is a prerequisite for the back-end optimization of general LiDAR SLAM algorithms to achieve a globally consistent map. This process is also called LiDAR odometry. Aiming to achieve lower drift and robust LiDAR odometry in less structured outdoor scene using a low-cost wheeled robot-borne laser scanning system, a segment-based sampling strategy for LiDAR odometry is proposed in this paper. Proposed method was tested in two typical less structured outdoor scenes and compared with other two state of the art methods. The results reveal that the proposed method achieves lower drift and significantly outperform the state of the art.

Author(s):  
W. Wu ◽  
C. Chen ◽  
Y. Cong ◽  
Z. Dong ◽  
J. Li ◽  
...  

<p><strong>Abstract.</strong> Aiming to accomplish automatic and real-time three-dimensional mapping in both indoor and outdoor scenes, a low-cost wheeled robot-borne laser scanning system is proposed in this paper. The system includes a laser scanner, an inertial measurement unit, a modified turtlebot3 two-wheel differential chassis and etc. To achieve a globally consistent map, the system performs global trajectory optimization after detecting the loop closure. Experiments are undertaken in two typical indoor/outdoor scenes that is an underground car park and a road environment in the campus of Wuhan University. The point clouds acquired by the proposed system are quantitatively evaluated by comparing the derived point clouds with the ground truth data collected by a RIEGL VZ 400 laser scanner. The results present an accuracy of 90% points below 0.1 meter error in the tested scene, showing that its applicability and potential in indoor and mapping applications.</p>


2015 ◽  
Vol 9 (4) ◽  
Author(s):  
Erik Heinz ◽  
Christian Eling ◽  
Markus Wieland ◽  
Lasse Klingbeil ◽  
Heiner Kuhlmann

AbstractIn recent years, kinematic laser scanning has become increasingly popular because it offers many benefits compared to static laser scanning. The advantages include both saving of time in the georeferencing and a more favorable scanning geometry. Often mobile laser scanning systems are installed on wheeled platforms, which may not reach all parts of the object. Hence, there is an interest in the development of portable systems, which remain operational even in inaccessible areas. The development of such a portable laser scanning system is presented in this paper. It consists of a lightweight direct georeferencing unit for the position and attitude determination and a small low-cost 2D laser scanner. This setup provides advantages over existing portable systems that employ heavy and expensive 3D laser scanners in a profiling mode.A special emphasis is placed on the system calibration, i. e. the determination of the transformation between the coordinate frames of the direct georeferencing unit and the 2D laser scanner. To this end, a calibration field is used, which consists of differently orientated georeferenced planar surfaces, leading to estimates for the lever arms and boresight angles with an accuracy of mm and one-tenth of a degree. Finally, point clouds of the mobile laser scanning system are compared with georeferenced point clouds of a high-precision 3D laser scanner. Accordingly, the accuracy of the system is in the order of cm to dm. This is in good agreement with the expected accuracy, which has been derived from the error propagation of previously estimated variance components.


Author(s):  
C. Wang ◽  
Y. Dai ◽  
N. El-Sheimy ◽  
C. Wen ◽  
G. Retscher ◽  
...  

<p><strong>Abstract.</strong> This paper presents the design of the benchmark dataset on multisensory indoor mapping and position (MIMAP) which is sponsored by ISPRS scientific initiatives. The benchmark dataset including point clouds captured by indoor mobile laser scanning system (IMLS) in indoor environments of various complexity. The benchmark aims to stimulate and promote research in the following three fields: (1) SLAM-based indoor point cloud generation; (2) automated BIM feature extraction from point clouds, with an emphasis on the elements, such as floors, walls, ceilings, doors, windows, stairs, lamps, switches, air outlets, that are involved in building management and navigation tasks ; and (3) low-cost multisensory indoor positioning, focusing on the smartphone platform solution. MIMAP provides a common framework for the evaluation and comparison of LiDAR-based SLAM, BIM feature extraction, and smartphone indoor positioning methods.</p>


2018 ◽  
Vol 10 (9) ◽  
pp. 1403 ◽  
Author(s):  
Jianwei Wu ◽  
Wei Yao ◽  
Przemyslaw Polewski

To meet a growing demand for accurate high-fidelity vegetation cover mapping in urban areas toward biodiversity conservation and assessing the impact of climate change, this paper proposes a complete approach to species and vitality classification at single tree level by synergistic use of multimodality 3D remote sensing data. So far, airborne laser scanning system(ALS or airborne LiDAR) has shown promising results in tree cover mapping for urban areas. This paper analyzes the potential of mobile laser scanning system/mobile mapping system (MLS/MMS)-based methods for recognition of urban plant species and characterization of growth conditions using ultra-dense LiDAR point clouds and provides an objective comparison with the ALS-based methods. Firstly, to solve the extremely intensive computational burden caused by the classification of ultra-dense MLS data, a new method for the semantic labeling of LiDAR data in the urban road environment is developed based on combining a conditional random field (CRF) for the context-based classification of 3D point clouds with shape priors. These priors encode geometric primitives found in the scene through sample consensus segmentation. Then, single trees are segmented from the labelled tree points using the 3D graph cuts algorithm. Multinomial logistic regression classifiers are used to determine the fine deciduous urban tree species of conversation concern and their growth vitality. Finally, the weight-of-evidence (WofE) based decision fusion method is applied to combine the probability outputs of classification results from the MLS and ALS data. The experiment results obtained in city road corridors demonstrated that point cloud data acquired from the airborne platform achieved even slightly better results in terms of tree detection rate, tree species and vitality classification accuracy, although the tree vitality distribution in the test site is less balanced compared to the species distribution. When combined with MLS data, overall accuracies of 78% and 74% for tree species and vitality classification can be achieved, which has improved by 5.7% and 4.64% respectively compared to the usage of airborne data only.


Author(s):  
M. Kedzierski ◽  
D. Wierzbickia ◽  
A. Fryskowska ◽  
B. Chlebowska

The laser scanning technique is still a very popular and fast growing method of obtaining information on modeling 3D objects. The use of low-cost miniature scanners creates new opportunities for small objects of 3D modeling based on point clouds acquired from the scan. The same, the development of accuracy and methods of automatic processing of this data type is noticeable. The article presents methods of collecting raw datasets in the form of a point-cloud using a low-cost ground-based laser scanner FabScan. As part of the research work 3D scanner from an open source FabLab project was constructed. In addition, the results for the analysis of the geometry of the point clouds obtained by using a low-cost laser scanner were presented. Also, some analysis of collecting data of different structures (made of various materials such as: glass, wood, paper, gum, plastic, plaster, ceramics, stoneware clay etc. and of different shapes: oval and similar to oval and prism shaped) have been done. The article presents two methods used for analysis: the first one - visual (general comparison between the 3D model and the real object) and the second one - comparative method (comparison between measurements on models and scanned objects using the mean error of a single sample of observations). The analysis showed, that the low-budget ground-based laser scanner FabScan has difficulties with collecting data of non-oval objects. Items built of glass painted black also caused problems for the scanner. In addition, the more details scanned object contains, the lower the accuracy of the collected point-cloud is. Nevertheless, the accuracy of collected data (using oval-straight shaped objects) is satisfactory. The accuracy, in this case, fluctuates between ± 0,4 mm and ± 1,0 mm whereas when using more detailed objects or a rectangular shaped prism the accuracy is much more lower, between 2,9 mm and ± 9,0 mm. Finally, the publication presents the possibility (for the future expansion of research) of modernization FabScan by the implementation of a larger amount of camera-laser units. This will enable spots the registration , that are less visible.


Author(s):  
C. Chen ◽  
X. Zou ◽  
M. Tian ◽  
J. Li ◽  
W. Wu ◽  
...  

In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.


2020 ◽  
Vol 12 (3) ◽  
pp. 555 ◽  
Author(s):  
Erik Heinz ◽  
Christoph Holst ◽  
Heiner Kuhlmann ◽  
Lasse Klingbeil

Mobile laser scanning has become an established measuring technique that is used for many applications in the fields of mapping, inventory, and monitoring. Due to the increasing operationality of such systems, quality control w.r.t. calibration and evaluation of the systems becomes more and more important and is subject to on-going research. This paper contributes to this topic by using tools from geodetic configuration analysis in order to design and evaluate a plane-based calibration field for determining the lever arm and boresight angles of a 2D laser scanner w.r.t. a GNSS/IMU unit (Global Navigation Satellite System, Inertial Measurement Unit). In this regard, the impact of random, systematic, and gross observation errors on the calibration is analyzed leading to a plane setup that provides accurate and controlled calibration parameters. The designed plane setup is realized in the form of a permanently installed calibration field. The applicability of the calibration field is tested with a real mobile laser scanning system by frequently repeating the calibration. Empirical standard deviations of <1 ... 1.5 mm for the lever arm and <0.005 ∘ for the boresight angles are obtained, which was priorly defined to be the goal of the calibration. In order to independently evaluate the mobile laser scanning system after calibration, an evaluation environment is realized consisting of a network of control points as well as TLS (Terrestrial Laser Scanning) reference point clouds. Based on the control points, both the horizontal and vertical accuracy of the system is found to be < 10 mm (root mean square error). This is confirmed by comparisons to the TLS reference point clouds indicating a well calibrated system. Both the calibration field and the evaluation environment are permanently installed and can be used for arbitrary mobile laser scanning systems.


2014 ◽  
Vol 35 (3) ◽  
pp. 244-251 ◽  
Author(s):  
Onur Akyol ◽  
Zaide Duran

Author(s):  
P. Rönnholm ◽  
X. Liang ◽  
A. Kukko ◽  
A. Jaakkola ◽  
J. Hyyppä

Backpack laser scanning systems have emerged recently enabling fast data collection and flexibility to make measurements also in areas that cannot be reached with, for example, vehicle-based laser scanners. Backpack laser scanning systems have been developed both for indoor and outdoor use. We have developed a quality analysis process in which the quality of backpack laser scanning data is evaluated in the forest environment. The reference data was collected with an unmanned aerial vehicle (UAV) laser scanning system. The workflow included noise filtering, division of data into smaller patches, ground point extraction, ground data decimation, and ICP registration. As a result, we managed to observe the misalignments of backpack laser scanning data for 97 patches each including data from circa 10 seconds period of time. This evaluation revealed initial average misalignments of 0.227 m, 0.073 and -0.083 in the easting, northing and elevation directions, respectively. Furthermore, backpack data was corrected according to the ICP registration results. Our correction algorithm utilized the time-based linear transformation of backpack laser scanning point clouds. After the correction of data, the ICP registration was run again. This revealed remaining misalignments between the corrected backpack laser scanning data and the original UAV data. We found average misalignments of 0.084, 0.020 and -0.005 meters in the easting, northing and elevation directions, respectively.


Sign in / Sign up

Export Citation Format

Share Document