scholarly journals Design and Evaluation of a Permanently Installed Plane-Based Calibration Field for Mobile Laser Scanning Systems

2020 ◽  
Vol 12 (3) ◽  
pp. 555 ◽  
Author(s):  
Erik Heinz ◽  
Christoph Holst ◽  
Heiner Kuhlmann ◽  
Lasse Klingbeil

Mobile laser scanning has become an established measuring technique that is used for many applications in the fields of mapping, inventory, and monitoring. Due to the increasing operationality of such systems, quality control w.r.t. calibration and evaluation of the systems becomes more and more important and is subject to on-going research. This paper contributes to this topic by using tools from geodetic configuration analysis in order to design and evaluate a plane-based calibration field for determining the lever arm and boresight angles of a 2D laser scanner w.r.t. a GNSS/IMU unit (Global Navigation Satellite System, Inertial Measurement Unit). In this regard, the impact of random, systematic, and gross observation errors on the calibration is analyzed leading to a plane setup that provides accurate and controlled calibration parameters. The designed plane setup is realized in the form of a permanently installed calibration field. The applicability of the calibration field is tested with a real mobile laser scanning system by frequently repeating the calibration. Empirical standard deviations of <1 ... 1.5 mm for the lever arm and <0.005 ∘ for the boresight angles are obtained, which was priorly defined to be the goal of the calibration. In order to independently evaluate the mobile laser scanning system after calibration, an evaluation environment is realized consisting of a network of control points as well as TLS (Terrestrial Laser Scanning) reference point clouds. Based on the control points, both the horizontal and vertical accuracy of the system is found to be < 10 mm (root mean square error). This is confirmed by comparisons to the TLS reference point clouds indicating a well calibrated system. Both the calibration field and the evaluation environment are permanently installed and can be used for arbitrary mobile laser scanning systems.

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 645
Author(s):  
Qian Wang ◽  
Chao Tang ◽  
Cuijun Dong ◽  
Qingzhou Mao ◽  
Fei Tang ◽  
...  

When performing the inspection of subway tunnels, there is an immense amount of data to be collected and the time available for inspection is short; however, the requirement for inspection accuracy is high. In this study, a mobile laser scanning system (MLSS) was used for the inspection of subway tunnels, and the key technology of the positioning and orientation system (POS) was investigated. We utilized the inertial measurement unit (IMU) and the odometer as the core sensors of the POS. The initial attitude of the MLSS was obtained by using a static initial alignment method. Considering that there is no global navigation satellite system (GNSS) signal in a subway, the forward and backward dead reckoning (DR) algorithm was used to calculate the positions and attitudes of the MLSS from any starting point in two directions. While the MLSS passed by the control points distributed on both sides of the track, the local coordinates of the control points were transmitted to the center of the MLSS by using the ranging information of the laser scanner. Then, a four-parameter transformation method was used to correct the error of the POS and transform the 3-D state information of the MLSS from a navigation coordinate system (NCS) to a local coordinate system (LCS). This method can completely eliminate a MLSS’s dependence on GNSS signals, and the obtained positioning and attitude information can be used for point cloud data fusion to directly obtain the coordinates in the LCS. In a tunnel of the Beijing–Zhangjiakou high-speed railway, when the distance interval of the control points used for correction was 120 m, the accuracy of the 3-D coordinates of the point clouds was 8 mm, and the experiment also showed that it takes less than 4 h to complete all the inspection work for a 5–6 km long tunnel. Further, the results from the inspection work of Wuhan subway lines showed that when the distance intervals of the control points used for correction were 60 m, 120 m, 240 m, and 480 m, the accuracies of the 3-D coordinates of the point clouds in the local coordinate system were 4 mm, 6 mm, 7 mm, and 8 mm, respectively.


2016 ◽  
Vol 11 (2) ◽  
pp. 153-159 ◽  
Author(s):  
Vladislovas Česlovas Aksamitauskas ◽  
Vilma Kriaučiūnaitė-Neklejonovienė ◽  
Donatas Rekus ◽  
Birutė Ruzgienė ◽  
Virgaudas Puodžiukas ◽  
...  

The objective of the work is to assess the advantages of the laser scanning system in the topographical surveys. The analysis and assessment of two methods, the classical total station method and mobile laser scanning are presented in the article. The results of the performed investigations have been compared, the technological characteristics and accuracy of the investigations have been presented, as well as the procedure of the topographic image formation, possibilities and efficiency have been assessed. The real-life topographic survey’s projects on the analysis of roads and streets (components) have been used where the ground surface, the components of the roads and the surrounding objects have been analysed. The analysis provides information on the availability and potential of the investigated methods and the final attained accuracy due to a certain number of the control points. The obtained results indicate that the main differences of the methods revealed when compiling the topographical images for urban or rural areas are the speed of measurements and data processing, level of detail of the results and various possibilities of the method implementation.


Author(s):  
P. Rönnholm ◽  
X. Liang ◽  
A. Kukko ◽  
A. Jaakkola ◽  
J. Hyyppä

Backpack laser scanning systems have emerged recently enabling fast data collection and flexibility to make measurements also in areas that cannot be reached with, for example, vehicle-based laser scanners. Backpack laser scanning systems have been developed both for indoor and outdoor use. We have developed a quality analysis process in which the quality of backpack laser scanning data is evaluated in the forest environment. The reference data was collected with an unmanned aerial vehicle (UAV) laser scanning system. The workflow included noise filtering, division of data into smaller patches, ground point extraction, ground data decimation, and ICP registration. As a result, we managed to observe the misalignments of backpack laser scanning data for 97 patches each including data from circa 10 seconds period of time. This evaluation revealed initial average misalignments of 0.227 m, 0.073 and -0.083 in the easting, northing and elevation directions, respectively. Furthermore, backpack data was corrected according to the ICP registration results. Our correction algorithm utilized the time-based linear transformation of backpack laser scanning point clouds. After the correction of data, the ICP registration was run again. This revealed remaining misalignments between the corrected backpack laser scanning data and the original UAV data. We found average misalignments of 0.084, 0.020 and -0.005 meters in the easting, northing and elevation directions, respectively.


Author(s):  
W. Wu ◽  
C. Chen ◽  
Y. Cong ◽  
Z. Dong ◽  
J. Li ◽  
...  

<p><strong>Abstract.</strong> Aiming to accomplish automatic and real-time three-dimensional mapping in both indoor and outdoor scenes, a low-cost wheeled robot-borne laser scanning system is proposed in this paper. The system includes a laser scanner, an inertial measurement unit, a modified turtlebot3 two-wheel differential chassis and etc. To achieve a globally consistent map, the system performs global trajectory optimization after detecting the loop closure. Experiments are undertaken in two typical indoor/outdoor scenes that is an underground car park and a road environment in the campus of Wuhan University. The point clouds acquired by the proposed system are quantitatively evaluated by comparing the derived point clouds with the ground truth data collected by a RIEGL VZ 400 laser scanner. The results present an accuracy of 90% points below 0.1 meter error in the tested scene, showing that its applicability and potential in indoor and mapping applications.</p>


Author(s):  
P. Rönnholm ◽  
X. Liang ◽  
A. Kukko ◽  
A. Jaakkola ◽  
J. Hyyppä

Backpack laser scanning systems have emerged recently enabling fast data collection and flexibility to make measurements also in areas that cannot be reached with, for example, vehicle-based laser scanners. Backpack laser scanning systems have been developed both for indoor and outdoor use. We have developed a quality analysis process in which the quality of backpack laser scanning data is evaluated in the forest environment. The reference data was collected with an unmanned aerial vehicle (UAV) laser scanning system. The workflow included noise filtering, division of data into smaller patches, ground point extraction, ground data decimation, and ICP registration. As a result, we managed to observe the misalignments of backpack laser scanning data for 97 patches each including data from circa 10 seconds period of time. This evaluation revealed initial average misalignments of 0.227 m, 0.073 and -0.083 in the easting, northing and elevation directions, respectively. Furthermore, backpack data was corrected according to the ICP registration results. Our correction algorithm utilized the time-based linear transformation of backpack laser scanning point clouds. After the correction of data, the ICP registration was run again. This revealed remaining misalignments between the corrected backpack laser scanning data and the original UAV data. We found average misalignments of 0.084, 0.020 and -0.005 meters in the easting, northing and elevation directions, respectively.


2011 ◽  
Vol 201-203 ◽  
pp. 940-943
Author(s):  
Heng Feng Yan ◽  
Jun Shao ◽  
Ji Min Chen

This paper introduces a solution for laser scanning system, which utilizes machine vision technology. It includes algorithm for positioning and matrix for scanning control. The system can be used to detect an object and laser mark on specific position. This work explains how to use one CCD to catch an object’s position variation relative to a reference point, and how to translate the different coordination systems for laser scanner etc.


Author(s):  
M. Hillemann ◽  
J. Meidow ◽  
B. Jutzi

<p><strong>Abstract.</strong> The extrinsic calibration of a Mobile Laser Scanning system aims to determine the relative orientation between a laser scanner and a sensor that estimates the exterior orientation of the sensor system. The relative orientation is one component that limits the accuracy of a 3D point cloud which is captured with a Mobile Laser Scanning system. The most efficient way to determine the relative orientation of a Mobile Laser Scanning system is using a self-calibration approach as this avoids the need to perform an additional calibration beforehand. Instead, the system can be calibrated automatically during data acquisition. The entropy-based self-calibration fits into this category and is utilized in this contribution. In this contribution, we analyze the impact of four different trajectories on the result of the entropy-based self-calibration, namely (i) uni-directional, (ii) ortho-directional, (iii) bi-directional, and (iv) multi-directional trajectory. Theoretical considerations are supported by experiments performed with the publicly available <i>MLS 1 – TUM City Campus</i> data set. The investigations show that strong variations of the yaw angle in a confined space or bidirectional trajectories as well as the variation of the height of the laser scanner are beneficial for calibration.</p>


2021 ◽  
Vol 13 (16) ◽  
pp. 3124
Author(s):  
Jakob Raschhofer ◽  
Gabriel Kerekes ◽  
Corinna Harmening ◽  
Hans Neuner ◽  
Volker Schwieger

A flexible approach for geometric modelling of point clouds obtained from Terrestrial Laser Scanning (TLS) is by means of B-splines. These functions have gained some popularity in the engineering geodesy as they provide a suitable basis for a spatially continuous and parametric deformation analysis. In the predominant studies on geometric modelling of point clouds by B-splines, uncorrelated and equally weighted measurements are assumed. Trying to overcome this, the elementary errors theory is applied for establishing fully populated covariance matrices of TLS observations that consider correlations in the observed point clouds. In this article, a systematic approach for establishing realistic synthetic variance–covariance matrices (SVCMs) is presented and afterward used to model TLS point clouds by B-splines. Additionally, three criteria are selected to analyze the impact of different SVCMs on the functional and stochastic components of the estimation results. Plausible levels for variances and covariances are obtained using a test specimen of several dm—dimension. It is used to identify the most dominant elementary errors under laboratory conditions. Starting values for the variance level are obtained from a TLS calibration. The impact of SVCMs with different structures and different numeric values are comparatively investigated. Main findings of the paper are that for the analyzed object size and distances, the structure of the covariance matrix does not significantly affect the location of the estimated surface control points, but their precision in terms of the corresponding standard deviations. Regarding the latter, properly setting the main diagonal terms of the SVCM is of superordinate importance compared to setting the off-diagonal ones. The investigation of some individual errors revealed that the influence of their standard deviation on the precision of the estimated parameters is primarily dependent on the scanning distance. When the distance stays the same, one-sided influences on the precision of the estimated control points can be observed with an increase in the standard deviations.


2018 ◽  
Vol 10 (9) ◽  
pp. 1403 ◽  
Author(s):  
Jianwei Wu ◽  
Wei Yao ◽  
Przemyslaw Polewski

To meet a growing demand for accurate high-fidelity vegetation cover mapping in urban areas toward biodiversity conservation and assessing the impact of climate change, this paper proposes a complete approach to species and vitality classification at single tree level by synergistic use of multimodality 3D remote sensing data. So far, airborne laser scanning system(ALS or airborne LiDAR) has shown promising results in tree cover mapping for urban areas. This paper analyzes the potential of mobile laser scanning system/mobile mapping system (MLS/MMS)-based methods for recognition of urban plant species and characterization of growth conditions using ultra-dense LiDAR point clouds and provides an objective comparison with the ALS-based methods. Firstly, to solve the extremely intensive computational burden caused by the classification of ultra-dense MLS data, a new method for the semantic labeling of LiDAR data in the urban road environment is developed based on combining a conditional random field (CRF) for the context-based classification of 3D point clouds with shape priors. These priors encode geometric primitives found in the scene through sample consensus segmentation. Then, single trees are segmented from the labelled tree points using the 3D graph cuts algorithm. Multinomial logistic regression classifiers are used to determine the fine deciduous urban tree species of conversation concern and their growth vitality. Finally, the weight-of-evidence (WofE) based decision fusion method is applied to combine the probability outputs of classification results from the MLS and ALS data. The experiment results obtained in city road corridors demonstrated that point cloud data acquired from the airborne platform achieved even slightly better results in terms of tree detection rate, tree species and vitality classification accuracy, although the tree vitality distribution in the test site is less balanced compared to the species distribution. When combined with MLS data, overall accuracies of 78% and 74% for tree species and vitality classification can be achieved, which has improved by 5.7% and 4.64% respectively compared to the usage of airborne data only.


Author(s):  
C. Chen ◽  
X. Zou ◽  
M. Tian ◽  
J. Li ◽  
W. Wu ◽  
...  

In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.


Sign in / Sign up

Export Citation Format

Share Document