scholarly journals PREDICTING THE INFRARED UAV IMAGERY OVER THE COAST

Author(s):  
A. Collin ◽  
D. James ◽  
A. Mury ◽  
M. Letard ◽  
B. Guillot

Abstract. The infrared (IR) imagery provides additional information to the visible (red-green-blue, RGB) about vegetation, soil, water, mineral, or temperature, and has become essential for various disciplines, such as geology, hydrology, ecology, archeology, meteorology or geography. The integration of the IR sensors, ranging from near-IR (NIR) to thermal-IR through mid-IR, constitutes a baseline for Earth Observation satellites but not for unmanned airborne vehicles (UAV). Given the hyperspatial and hypertemporal characteristics associated with the UAV survey, it is relevant to benefit from the IR waveband in addition to the visible imagery for mapping purposes. This paper proposes to predict the NIR reflectance from RGB digital number predictors collected with a consumer-grade UAV over a structurally and compositionally complex coastal area. An array of 15 000 data, distributed into calibration, validation and test datasets across 15 representative coastal habitats, was used to build and compare the performance of the standard least squares, decision tree, boosted tree, bootstrap forest and fully connected neural network (NN) models. The NN family surpassed the four other ones, and the best NN model (R2 = 0.67) integrated two hidden layers provided, each, with five nodes of hyperbolic tangent and five nodes of Gaussian activation functions. This perceptron enabled to produce a NIR reflectance spatially-explicit model deprived of original artifacts due to the flight constraints. At the habitat scale, sedimentary and dry vegetation environments were satisfactorily predicted (R2 > 0.6), contrary to the healthy vegetation (R2 < 0.2). Those innovative findings will be useful for scientists and managers tasked with hyperspatial and hypertemporal mapping.

2014 ◽  
Vol 31 (12) ◽  
pp. 3359-3372 ◽  
Author(s):  
Simon Dellicour ◽  
Chedly Kastally ◽  
Olivier J. Hardy ◽  
Patrick Mardulyn

2017 ◽  
Vol 14 (8) ◽  
pp. 2055-2068 ◽  
Author(s):  
Jie Zhang ◽  
Arthur H. W. Beusen ◽  
Dirk F. Van Apeldoorn ◽  
José M. Mogollón ◽  
Chaoqing Yu ◽  
...  

Abstract. Phosphorus (P) plays a vital role in global crop production and food security. In this study, we investigate the changes in soil P pool inventories calibrated from historical countrywide crop P uptake, using a 0.5-by-0.5° spatially explicit model for the period 1900–2010. Globally, the total P pool per hectare increased rapidly between 1900 and 2010 in soils of Europe (+31 %), South America (+2 %), North America (+15 %), Asia (+17 %), and Oceania (+17 %), while it has been stable in Africa. Simulated crop P uptake is influenced by both soil properties (available P and the P retention potential) and crop characteristics (maximum uptake). Until 1950, P fertilizer application had a negligible influence on crop uptake, but recently it has become a driving factor for food production in industrialized countries and a number of transition countries like Brazil, Korea, and China. This comprehensive and spatially explicit model can be used to assess how long surplus P fertilization is needed or how long depletions of built-up surplus P can continue without affecting crop yield.


2016 ◽  
Author(s):  
Rebecca K. Borchering ◽  
Steve E. Bellan ◽  
Jason M. Flynn ◽  
Juliet R.C. Pulliam ◽  
Scott A. McKinley

AbstractSubmitted Manuscript 2016. Territorial animals share a variety of common resources, which can be a major driver of conspecific encounter rates. We examine how changes in resource availability influence the rate of encounters among individuals in a consumer population by implementing a spatially explicit model for resource visitation behavior by consumers. Using data from 2009 and 2010 in Etosha National Park, we verify our model's prediction that there is a saturation effect in the expected number of jackals that visit a given carcass site as carcasses become abundant. However, this does not directly imply that the overall resource-driven encounter rate among jackals decreases. This is because the increase in available carcasses is accompanied by an increase in the number of jackals that detect and potentially visit carcasses. Using simulations and mathematical analysis of our consumer-resource interaction model, we characterize key features of the relationship between resource-driven encounter rate and model parameters. These results are used to investigate a standing hypothesis that the outbreak of a fatal disease among zebras can potentially lead to an outbreak of an entirely different disease in the jackal population, a process we refer to as indirect induction of disease.


2020 ◽  
Vol 54 (2) ◽  
pp. 110 ◽  
Author(s):  
Geoffrey Bedrosian ◽  
Jason D. Carlisle ◽  
Brian Woodbridge ◽  
Jeffrey R. Dunk ◽  
Zach P. Wallace ◽  
...  

2018 ◽  
Vol 285 (1884) ◽  
pp. 20180953 ◽  
Author(s):  
Jasmijn Hillaert ◽  
Martijn L. Vandegehuchte ◽  
Thomas Hovestadt ◽  
Dries Bonte

An individual's body size is central to its behaviour and physiology, and tightly linked to its movement ability. The spatial arrangement of resources and a consumer's capacity to locate them are therefore expected to exert strong selection on consumer body size. We investigated the evolutionary impact of both the fragmentation and loss of habitat on consumer body size and its feedback effects on resource distribution, under varying levels of information used during habitat choice. We developed a mechanistic, individual-based, spatially explicit model, including several allometric rules for key consumer traits. Our model reveals that as resources become more fragmented and scarce, informed habitat choice selects for larger body sizes while random habitat choice promotes small sizes. Information use may thus be an overlooked explanation for the observed variation in body size responses to habitat fragmentation. Moreover, we find that resources can accumulate and aggregate if information about resource abundance is incomplete. Informed movement results in stable resource–consumer dynamics and controlled resources across space. However, habitat loss and fragmentation destabilize local dynamics and disturb resource suppression by the consumer. Considering information use during movement is thus critical to understand the eco-evolutionary dynamics underlying the functioning and structuring of consumer communities.


2019 ◽  
Vol 35 (2) ◽  
pp. 150-161 ◽  
Author(s):  
Ali Nejat ◽  
Roxana J. Javid ◽  
Souparno Ghosh ◽  
Saeed Moradi

Sign in / Sign up

Export Citation Format

Share Document