scholarly journals GENERATING SYNTHETIC 3D POINT SEGMENTS FOR IMPROVED CLASSIFICATION OF MOBILE LIDAR POINT CLOUDS

Author(s):  
S. A. Chitnis ◽  
Z. Huang ◽  
K. Khoshelham

Abstract. Mobile lidar point clouds are commonly used for 3d mapping of road environments as they provide a rich, highly detailed geometric representation of objects on and around the road. However, raw lidar point clouds lack semantic information about the type of objects, which is necessary for various applications. Existing methods for the classification of objects in mobile lidar data, including state of the art deep learning methods, achieve relatively low accuracies, and a primary reason for this under-performance is the inadequacy of available 3d training samples to sufficiently train deep networks. In this paper, we propose a generative model for creating synthetic 3d point segments that can aid in improving the classification performance of mobile lidar point clouds. We train a 3d Adversarial Autoencoder (3dAAE) to generate synthetic point segments that exhibit a high resemblance to and share similar geometric features with real point segments. We evaluate the performance of a PointNet-like classifier trained with and without the synthetic point segments. The evaluation results support our hypothesis that training a classifier with training data augmented with synthetic samples leads to significant improvement in the classification performance. Specifically, our model achieves an F1 score of 0.94 for vehicles and pedestrians and 1.00 for traffic signs.

Author(s):  
H. He ◽  
K. Khoshelham ◽  
C. Fraser

<p><strong>Abstract.</strong> The classification of mobile Lidar data is challenged by the complexity of objects in the point clouds and the limited number of available training samples. Incomplete shape, noise points and uneven point density make the extraction of features from point clouds relatively arduous. Additionally, the difference in point density, and size and shape of objects, restricts the utilization of labelled samples from other sources. To solve this problem, we explore the possibility of improving the classification performance of a state-of-the-art deep learning method, Vox-Net, by using auxiliary training samples from a different dataset. We compare the performance of Vox-Net trained with and without the auxiliary dataset. The comparison shows that more instances can be recognized in classes with auxiliary data. At the same time, the performance in classes without complementary data can deteriorate due to the low number of samples in these categories. To achieve a balance in the performance for different categories, we further replace the classification layer of Vox-Net with AdaBoost. The AdaBoost classification displays good recognition ability in classes with few instances but decreases the overall accuracy.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mengxi Dai ◽  
Dezhi Zheng ◽  
Shucong Liu ◽  
Pengju Zhang

Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern (CSP) as preprocessing step before classification. The CSP method is a supervised algorithm. Therefore a lot of time-consuming training data is needed to build the model. To address this issue, one promising approach is transfer learning, which generalizes a learning model can extract discriminative information from other subjects for target classification task. To this end, we propose a transfer kernel CSP (TKCSP) approach to learn a domain-invariant kernel by directly matching distributions of source subjects and target subjects. The dataset IVa of BCI Competition III is used to demonstrate the validity by our proposed methods. In the experiment, we compare the classification performance of the TKCSP against CSP, CSP for subject-to-subject transfer (CSP SJ-to-SJ), regularizing CSP (RCSP), stationary subspace CSP (ssCSP), multitask CSP (mtCSP), and the combined mtCSP and ssCSP (ss + mtCSP) method. The results indicate that the superior mean classification performance of TKCSP can achieve 81.14%, especially in case of source subjects with fewer number of training samples. Comprehensive experimental evidence on the dataset verifies the effectiveness and efficiency of the proposed TKCSP approach over several state-of-the-art methods.


Author(s):  
J. Gehrung ◽  
M. Hebel ◽  
M. Arens ◽  
U. Stilla

Abstract. Change detection is an important tool for processing multiple epochs of mobile LiDAR data in an efficient manner, since it allows to cope with an otherwise time-consuming operation by focusing on regions of interest. State-of-the-art approaches usually either do not handle the case of incomplete observations or are computationally expensive. We present a novel method based on a combination of point clouds and voxels that is able to handle said case, thereby being computationally less expensive than comparable approaches. Furthermore, our method is able to identify special classes of changes such as partially moved, fully moved and deformed objects in addition to the appeared and disappeared objects recognized by conventional approaches. The performance of our method is evaluated using the publicly available TUM City Campus datasets, showing an overall accuracy of 88 %.


2020 ◽  
Vol 34 (07) ◽  
pp. 11029-11036
Author(s):  
Jiabo Huang ◽  
Qi Dong ◽  
Shaogang Gong ◽  
Xiatian Zhu

Convolutional neural networks (CNNs) have achieved unprecedented success in a variety of computer vision tasks. However, they usually rely on supervised model learning with the need for massive labelled training data, limiting dramatically their usability and deployability in real-world scenarios without any labelling budget. In this work, we introduce a general-purpose unsupervised deep learning approach to deriving discriminative feature representations. It is based on self-discovering semantically consistent groups of unlabelled training samples with the same class concepts through a progressive affinity diffusion process. Extensive experiments on object image classification and clustering show the performance superiority of the proposed method over the state-of-the-art unsupervised learning models using six common image recognition benchmarks including MNIST, SVHN, STL10, CIFAR10, CIFAR100 and ImageNet.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2502
Author(s):  
Natalia Vanetik ◽  
Marina Litvak

Definitions are extremely important for efficient learning of new materials. In particular, mathematical definitions are necessary for understanding mathematics-related areas. Automated extraction of definitions could be very useful for automated indexing educational materials, building taxonomies of relevant concepts, and more. For definitions that are contained within a single sentence, this problem can be viewed as a binary classification of sentences into definitions and non-definitions. In this paper, we focus on automatic detection of one-sentence definitions in mathematical and general texts. We experiment with different classification models arranged in an ensemble and applied to a sentence representation containing syntactic and semantic information, to classify sentences. Our ensemble model is applied to the data adjusted with oversampling. Our experiments demonstrate the superiority of our approach over state-of-the-art methods in both general and mathematical domains.


Author(s):  
O. Majgaonkar ◽  
K. Panchal ◽  
D. Laefer ◽  
M. Stanley ◽  
Y. Zaki

Abstract. Classifying objects within aerial Light Detection and Ranging (LiDAR) data is an essential task to which machine learning (ML) is applied increasingly. ML has been shown to be more effective on LiDAR than imagery for classification, but most efforts have focused on imagery because of the challenges presented by LiDAR data. LiDAR datasets are of higher dimensionality, discontinuous, heterogenous, spatially incomplete, and often scarce. As such, there has been little examination into the fundamental properties of the training data required for acceptable performance of classification models tailored for LiDAR data. The quantity of training data is one such crucial property, because training on different sizes of data provides insight into a model’s performance with differing data sets. This paper assesses the impact of training data size on the accuracy of PointNet, a widely used ML approach for point cloud classification. Subsets of ModelNet ranging from 40 to 9,843 objects were validated on a test set of 400 objects. Accuracy improved logarithmically; decelerating from 45 objects onwards, it slowed significantly at a training size of 2,000 objects, corresponding to 20,000,000 points. This work contributes to the theoretical foundation for development of LiDAR-focused models by establishing a learning curve, suggesting the minimum quantity of manually labelled data necessary for satisfactory classification performance and providing a path for further analysis of the effects of modifying training data characteristics.


2020 ◽  
Vol 12 (3) ◽  
pp. 582 ◽  
Author(s):  
Rui Li ◽  
Shunyi Zheng ◽  
Chenxi Duan ◽  
Yang Yang ◽  
Xiqi Wang

In recent years, researchers have paid increasing attention on hyperspectral image (HSI) classification using deep learning methods. To improve the accuracy and reduce the training samples, we propose a double-branch dual-attention mechanism network (DBDA) for HSI classification in this paper. Two branches are designed in DBDA to capture plenty of spectral and spatial features contained in HSI. Furthermore, a channel attention block and a spatial attention block are applied to these two branches respectively, which enables DBDA to refine and optimize the extracted feature maps. A series of experiments on four hyperspectral datasets show that the proposed framework has superior performance to the state-of-the-art algorithm, especially when the training samples are signally lacking.


2020 ◽  
Vol 34 (07) ◽  
pp. 11229-11236
Author(s):  
Zhiwei Ke ◽  
Zhiwei Wen ◽  
Weicheng Xie ◽  
Yi Wang ◽  
Linlin Shen

Dropout regularization has been widely used in various deep neural networks to combat overfitting. It works by training a network to be more robust on information-degraded data points for better generalization. Conventional dropout and variants are often applied to individual hidden units in a layer to break up co-adaptations of feature detectors. In this paper, we propose an adaptive dropout to reduce the co-adaptations in a group-wise manner by coarse semantic information to improve feature discriminability. In particular, we showed that adjusting the dropout probability based on local feature densities can not only improve the classification performance significantly but also enhance the network robustness against adversarial examples in some cases. The proposed approach was evaluated in comparison with the baseline and several state-of-the-art adaptive dropouts over four public datasets of Fashion-MNIST, CIFAR-10, CIFAR-100 and SVHN.


Author(s):  
E. Barnefske ◽  
H. Sternberg

<p><strong>Abstract.</strong> Point clouds give a very detailed and sometimes very accurate representation of the geometry of captured objects. In surveying, point clouds captured with laser scanners or camera systems are an intermediate result that must be processed further. Often the point cloud has to be divided into regions of similar types (object classes) for the next process steps. These classifications are very time-consuming and cost-intensive compared to acquisition. In order to automate this process step, conventional neural networks (ConvNet), which take over the classification task, are investigated in detail. In addition to the network architecture, the classification performance of a ConvNet depends on the training data with which the task is learned. This paper presents and evaluates the point clould classification tool (PCCT) developed at HCU Hamburg. With the PCCT, large point cloud collections can be semi-automatically classified. Furthermore, the influence of erroneous points in three-dimensional point clouds is investigated. The network architecture PointNet is used for this investigation.</p>


Sign in / Sign up

Export Citation Format

Share Document