scholarly journals MRSSC: A BENCHMARK DATASET FOR MULTIMODAL REMOTE SENSING SCENE CLASSIFICATION

Author(s):  
K. Liu ◽  
A. Wu ◽  
X. Wan ◽  
S. Li

Abstract. Scene classification based on multi-source remote sensing image is important for image interpretation, and has many applications, such as change detection, visual navigation and image retrieval. Deep learning has become a research hotspot in the field of remote sensing scene classification, and dataset is an important driving force to promote its development. Most of the remote sensing scene classification datasets are optical images, and multimodal datasets are relatively rare. Existing datasets that contain both optical and SAR data, such as SARptical and WHU-SEN-City, which mainly focused on urban area without wide variety of scene categories. This largely limits the development of domain adaptive algorithms in remote sensing scene classification. In this paper, we proposed a multi-modal remote sensing scene classification dataset (MRSSC) based on Tiangong-2, a Chinese manned spacecraft which can acquire optical and SAR images at the same time. The dataset contains 12167 images (optical 6155 and 6012 for optical and SAR, resp.) of seven typical scenes, namely city, farmland, mountain, desert, coast, lake and river. Our dataset is evaluated by state-of-theart domain adaptation methods to establish a baseline with average classification accuracy of 79.2%. The MRSSC dataset will be released freely for the educational purpose and can be found at China Manned Space Engineering data service website (http://www.msadc.cn). This dataset will fill the gap between remote sensing scene classification between different image sources, and paves the way for a generalized image classification model for multi-modal earth observation data.

2021 ◽  
Vol 10 (1) ◽  
pp. 32
Author(s):  
Abhishek V. Potnis ◽  
Surya S. Durbha ◽  
Rajat C. Shinde

Earth Observation data possess tremendous potential in understanding the dynamics of our planet. We propose the Semantics-driven Remote Sensing Scene Understanding (Sem-RSSU) framework for rendering comprehensive grounded spatio-contextual scene descriptions for enhanced situational awareness. To minimize the semantic gap for remote-sensing-scene understanding, the framework puts forward the transformation of scenes by using semantic-web technologies to Remote Sensing Scene Knowledge Graphs (RSS-KGs). The knowledge-graph representation of scenes has been formalized through the development of a Remote Sensing Scene Ontology (RSSO)—a core ontology for an inclusive remote-sensing-scene data product. The RSS-KGs are enriched both spatially and contextually, using a deductive reasoner, by mining for implicit spatio-contextual relationships between land-cover classes in the scenes. The Sem-RSSU, at its core, constitutes novel Ontology-driven Spatio-Contextual Triple Aggregation and realization algorithms to transform KGs to render grounded natural language scene descriptions. Considering the significance of scene understanding for informed decision-making from remote sensing scenes during a flood, we selected it as a test scenario, to demonstrate the utility of this framework. In that regard, a contextual domain knowledge encompassing Flood Scene Ontology (FSO) has been developed. Extensive experimental evaluations show promising results, further validating the efficacy of this framework.


2019 ◽  
Vol 16 (8) ◽  
pp. 1324-1328 ◽  
Author(s):  
Shaoyue Song ◽  
Hongkai Yu ◽  
Zhenjiang Miao ◽  
Qiang Zhang ◽  
Yuewei Lin ◽  
...  

2020 ◽  
Vol 12 (11) ◽  
pp. 1770 ◽  
Author(s):  
Ronald Estoque

The formulation of the 17 sustainable development goals (SDGs) was a major leap forward in humankind’s quest for a sustainable future, which likely began in the 17th century, when declining forest resources in Europe led to proposals for the re-establishment and conservation of forests, a strategy that embodies the great idea that the current generation bears responsibility for future generations. Global progress toward SDG fulfillment is monitored by 231 unique social-ecological indicators spread across 169 targets, and remote sensing (RS) provides Earth observation data, directly or indirectly, for 30 (18%) of these indicators. Unfortunately, the UN Global Sustainable Development Report 2019—The Future is Now: Science for Achieving Sustainable Development concluded that, despite initial efforts, the world is not yet on track for achieving most of the SDG targets. Meanwhile, through the EO4SDG initiative by the Group on Earth Observations, the full potential of RS for SDG monitoring is now being explored at a global scale. As of April 2020, preliminary statistical data were available for 21 (70%) of the 30 RS-based SDG indicators, according to the Global SDG Indicators Database. Ten (33%) of the RS-based SDG indicators have also been included in the SDG Index and Dashboards found in the Sustainable Development Report 2019—Transformations to Achieve the Sustainable Development Goals. These statistics, however, do not necessarily reflect the actual status and availability of raw and processed geospatial data for the RS-based indicators, which remains an important issue. Nevertheless, various initiatives have been started to address the need for open access data. RS data can also help in the development of other potentially relevant complementary indicators or sub-indicators. By doing so, they can help meet one of the current challenges of SDG monitoring, which is how best to operationalize the SDG indicators.


2021 ◽  
pp. 49-61
Author(s):  
Miguel Ángel Esbrí

AbstractIn this chapter we present the concepts of remote sensing and Earth Observation and, explain why several of their characteristics (volume, variety and velocity) make us consider Earth Observation as Big Data. Thereafter, we discuss the most commonly open data formats used to store and share the data. The main sources of Earth Observation data are also described, with particular focus on the constellation of Sentinel satellites, Copernicus Hub and its six thematic services, as well as other private initiatives like the five Copernicus-related Data and Information Access Services and  Sentinel Hub. Next, we present an overview of representative software technologies for efficiently describing, storing, querying and accessing Earth Observation datasets. The chapter concludes with a summary of the Earth Observation datasets used in each DataBio pilot.


2020 ◽  
Vol 12 (3) ◽  
pp. 567
Author(s):  
Igor Ogashawara

Over the past few decades, there has been an increase in the number of studies about the estimation of phycocyanin derived from remote sensing techniques. Since phycocyanin is a unique pigment of inland water cyanobacteria, the quantification of its concentration from earth observation data is important for water quality monitoring - once some species can produce toxins. Because of the growth of this field in the past decade, several reviews and studies comparing algorithms have been published. Thus, instead of focusing on algorithms comparison or description, the goal of the present study is to systematically analyze and visualize the evolution of publications. Using the Web of Science database this study analyzed the existing publications on remote sensing of phycocyanin decade-by-decade for the period 1991–2020. The bibliometric analysis showed how research topics evolved from measuring pigments to the quantification of optical properties and from laboratory experiments to measuring entire temperate and tropical aquatic systems. This study provides the status quo and development trend of the field and points out what could be the direction for future research.


Author(s):  
Xiufei Zhang ◽  
Xiwen Yao ◽  
Xiaoxu Feng ◽  
Gong Cheng ◽  
Junwei Han

2021 ◽  
Vol 13 (14) ◽  
pp. 2758
Author(s):  
Vasileios Syrris ◽  
Sveinung Loekken

Earth observation and remote sensing technologies provide ample and comprehensive information regarding the dynamics and complexity of the Earth system [...]


Sign in / Sign up

Export Citation Format

Share Document