scholarly journals THE INTEGRATION OF BIM AND GIS IN CONSTRUCTION PROJECT – A DATA CONSISTENCY REVIEW

Author(s):  
W. N. F. W. A. Basir ◽  
U. Ujang ◽  
Z. Majid ◽  
S. Azri ◽  
T. L. Choon

Abstract. From days to days, management of construction project has been improved during life-cycle project, starting from planning until maintenance. This happen cause of the advantages in implementation technology of Building Information Modeling (BIM) and Geographic Information System (GIS) in supporting construction project. Few years ago, enhancement in term of BIM and GIS that provides an additional extension for the purpose of information management is very interesting. With the advantages that been provided by BIM and GIS, information of construction project can be adapted into real situation of the construction site which be helpful during the life-cycle of building construction. BIM and GIS is a different platform which contains their own advantages that support construction project. In order to bring the most effectiveness in management of construction project, integration between BIM and GIS becomes an important task to support the design phase until operational phase which include the facility management and maintenance. Although this integration can support the building information management, the software that used in integration process is still having limitations and differences in fulfilling the needs of users. For that reasons, data consistency needs to be studied in order to develop the best practices of integration application. The purpose of this paper is to investigate the data consistency during the integration process. From the investigation, it showed that there are some data inconsistency occurs in IFC platform after conversion process. Through this paper, the comparison of the geometric and semantic data before and after translation process will be examined.

2013 ◽  
Vol 368-370 ◽  
pp. 1962-1966 ◽  
Author(s):  
Qian Kun Wang ◽  
Ting Ting Mei ◽  
Zhan Liang Zu

With the development of project management theory and information technology, construction project management begins to information and integrated in China. This paper discusses the application of the shared model in construction stage by applying the concept of Building Information Modeling. The method of construction whose object is to accomplish construction information management in the real sense is presented in the platform of BIM technology.


Author(s):  
Akselrod Roman ◽  
◽  
Shpakov Andrii ◽  
Ryzhakova Galyna ◽  
Tetyana Honcharenko ◽  
...  

This study is devoted to the problem of digital transformation in the construction industry. To solve the proposed emerging approach for integrating information flows based on Building information modeling (BIM). This research describes the advanced methodology for creating a unified information model in construction, which combines architectural, design, engineering, cost and depreciation models of a construction object, raises a number of problems of reorganizing business processes at enterprises. The novelty of the research lies in the model of adapted common data environment based on life cycle of a construction project by stages of implementation and emergence of information. The proposed architecture is a platform for intelligent parametric modeling as intelligent CAD, which allows linking all elements of the model "Digital Enterprise".The result of the study is a conceptual mechanism for improving the efficiency of enterprise management processes based on the architectural approach in terms of digitalization of construction. Emerging technology in the study is the architecture of the intelligent decision support system in construction based on 5D BIMtechnology and Digital Enterprise. The main advantage of the proposed approach is the possibility of multiple reuse of information by all participants in the development and implementation of an investment and construction project without changes and distortions of data about the construction object. Keywords — Building Information Modeling, BIM, Digital Enterprise, Common Data Environment, life cycle of construction project, digitalization of construction


2018 ◽  
Vol 8 (4) ◽  
pp. 372-385 ◽  
Author(s):  
Ahmad Huzaimi Abd Jamil ◽  
Mohamad Syazli Fathi

Purpose Building information modeling (BIM) has been proven to enable outstanding results in construction processes by enhancing knowledge sharing with regard to a building or facility throughout its life cycle from the conceptual design to facility management. The purpose of this paper is to investigate the extent to which the use of BIM has impacted the legal and contractual implications of the existing construction contracts for aligning the three sets of relevant development domains: BIM functionality, contract procurement methods, and BIM legal and contractual issues to enhance the efficient use of valuable resources. Design/methodology/approach This exploratory study was undertaken by analyzing the literature using a novel approach involving a matrix that juxtaposes BIM functionalities for each project life cycle with contract procurement methods. As part of the study, 28 interactions of BIM legal and contractual issues have been identified, as representing positive and negative interactions. Findings The interaction matrix framework that juxtaposes BIM functionalities and procurement methods highlights the theoretical and practical relationships identified between the methods. It also simultaneously recognizes the constructive and destructive interactions between these development domains by means of critically identifying the possible interactions of the legal and contractual aspects of both the BIM project procurement and the practical aspects of BIM project delivery. Originality/value The present study contributes to the existing literature by extensively identifying the probable interactions of contractual issues within BIM functionality with contract procurement methods throughout the life cycle of a building construction project.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yongwook Jeong

Rigorous research and practical experience have allowed building information modeling (BIM) to be successfully adopted in the traditional design process without being severely cumbersome. However, there has been less focus on the connectivity and convergence of multiple types of BIM data or even the connectivity among non-BIM data, such as natural language and image/video data. The connectivity of BIM data means more than the syntactical correlations among them. This paper considers how BIM should be redefined to process BIM data as linked semantic data from the perspective of building information management and employ recent advances in the evaluation, analytics, and prediction (EAP) methodology for linked building ontologies and reasoners.


2019 ◽  
Vol 26 (7) ◽  
pp. 1518-1532 ◽  
Author(s):  
Ke Chen ◽  
Weisheng Lu

Purpose How to make an effective use of building information modeling (BIM) for information management (IM) is a challenging question in the field of construction project and asset management. Chen et al. (2015) answered this question by developing a conceptual framework of “bridging BIM and building (BBB).” However, the underlying mechanism through which BBB can truly impact IM remains unclear. The purpose of this paper is thus to demystify the mechanism linking BBB and IM. Design/methodology/approach Drawing upon the IM literature, this paper proposes three IM requirements, namely, requirements on information quantity, quality and accessibility, as the significant mediators between BBB and IM. To verify this proposition, a two-year, participatory case study was conducted based on a real-life construction project in which a BBB system was implemented. Findings The results of the case study supported the proposition that by enhancing the information quantity, quality and accessibility BBB could favorably contribute to IM in construction. Practical implications This paper provides knowledge about system architecture, components and their linkage in an operable BBB system. It also provides empirical experience about BBB implementation. Originality/value This study is among the first attempts to streamline the theoretical discourses relating to BBB for IM in a construction context. It contributes to the construction IM by directing attention to key IM requirements and processes rooted in the IM literature.


The variants of the division of the life cycle of a construction object at the stages adopted in the territory of the Russian Federation, as well as in other countries are considered. Particular attention is paid to the exemplary work plan – "RIBA plan of work", used in England. A feature of this document is its applicability in the information modeling of construction projects (Building information Modeling – BIM). The article presents a structural and logical scheme of the life cycle of a building object and a list of works that are performed using information modeling technology at various stages of the life cycle of the building. The place of information models in the process of determining the service life of the building is shown. On the basis of the considered sources of information, promising directions for the development of the life cycle management system of the construction object (Life Cycle Management) and the development of the regulatory framework in order to improve the use of information modeling in construction are given.


2021 ◽  
Vol 11 (15) ◽  
pp. 6810
Author(s):  
Corentin Coupry ◽  
Sylvain Noblecourt ◽  
Paul Richard ◽  
David Baudry ◽  
David Bigaud

In recent years, the use of digital twins (DT) to improve maintenance procedures has increased in various industrial sectors (e.g., manufacturing, energy industry, aerospace) but is more limited in the construction industry. However, the operation and maintenance (O&M) phase of a building’s life cycle is the most expensive. Smart buildings already use BIM (Building Information Modeling) for facility management, but they lack the predictive capabilities of DT. On the other hand, the use of extended reality (XR) technologies to improve maintenance operations has been a major topic of academic research in recent years, both through data display and remote collaboration. In this context, this paper focuses on reviewing projects using a combination of these technologies to improve maintenance operations in smart buildings. This review uses a combination of at least three of the terms “Digital Twin”, “Maintenance”, “BIM” and “Extended Reality”. Results show how a BIM can be used to create a DT and how this DT use combined with XR technologies can improve maintenance operations in a smart building. This paper also highlights the challenges for the correct implementation of a BIM-based DT combined with XR devices. An example of use is also proposed using a diagram of the possible interactions between the user, the DT and the application framework during maintenance operations.


Robotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Camilla Follini ◽  
Valerio Magnago ◽  
Kilian Freitag ◽  
Michael Terzer ◽  
Carmen Marcher ◽  
...  

The application of robotics in construction is hindered by the site environment, which is unstructured and subject to change. At the same time, however, buildings and corresponding sites can be accurately described by Building Information Modeling (BIM). Such a model contains geometric and semantic data about the construction and operation phases of the building and it is already available at the design phase. We propose a method to leverage BIM for simple yet efficient deployment of robotic systems for construction and operation of buildings. With our proposed approach, BIM is used to provide the robot with a priori geometric and semantic information on the environment and to store information on the operation progress. We present two applications that verify the effectiveness of our proposed method. This system represents a step forward towards an easier application of robots in construction.


2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


Sign in / Sign up

Export Citation Format

Share Document