scholarly journals GEE TIMESERIES EXPLORER FOR QGIS – INSTANT ACCESS TO PETABYTES OF EARTH OBSERVATION DATA

Author(s):  
P. Rufin ◽  
A. Rabe ◽  
L. Nill ◽  
P. Hostert

Abstract. Earth observation analysis workflows commonly require mass processing of time series data, with data volumes easily exceeding terabyte magnitude, even for relatively small areas of interest. Cloud processing platforms such as Google Earth Engine (GEE) leverage accessibility to satellite image archives and thus facilitate time series analysis workflows. Instant visualization of time series data and integration with local data sources is, however, currently not implemented or requires coding customized scripts or applications. Here, we present the GEE Timeseries Explorer plugin which grants instant access to GEE from within QGIS. It seamlessly integrates the QGIS user interface with a compact widget for visualizing time series from any predefined or customized GEE image collection. Users can visualize time series profiles for a given coordinate as an interactive plot or visualize images with customized band rendering within the QGIS map canvas. The plugin is available through the QGIS plugin repository and detailed documentation is available online (https://geetimeseriesexplorer.readthedocs.io/).

2020 ◽  
Vol 12 (18) ◽  
pp. 2953 ◽  
Author(s):  
Eliakim Hamunyela ◽  
Sabina Rosca ◽  
Andrei Mirt ◽  
Eric Engle ◽  
Martin Herold ◽  
...  

Monitoring of abnormal changes on the earth’s surface (e.g., forest disturbance) has improved greatly in recent years because of satellite remote sensing. However, high computational costs inherently associated with processing and analysis of satellite data often inhibit large-area and sub-annual monitoring. Normal seasonal variations also complicate the detection of abnormal changes at sub-annual scale in the time series of satellite data. Recently, however, computationally powerful platforms, such as the Google Earth Engine (GEE), have been launched to support large-area analysis of satellite data. Change detection methods with the capability to detect abnormal changes in time series data while accounting for normal seasonal variations have also been developed but are computationally intensive. Here, we report an implementation of BFASTmonitor (Breaks For Additive Season and Trend monitor) on GEE to support large-area and sub-annual change monitoring using satellite data available in GEE. BFASTmonitor is a data-driven unsupervised change monitoring approach that detects abnormal changes in time series data, with near real-time monitoring capabilities. Although BFASTmonitor has been widely used in forest cover loss monitoring, it is a generic change monitoring approach that can be used to monitor changes in a various time series data. Using Landsat time series for normalised difference moisture index (NDMI), we evaluated the performance of our GEE BFASTmonitor implementation (GEE BFASTmonitor) by detecting forest disturbance at three forest areas (humid tropical forest, dry tropical forest, and miombo woodland) while comparing it to the original R-based BFASTmonitor implementation (original BFASTmonitor). A map-to-map comparison showed that the spatial and temporal agreements on forest disturbance between the original and our GEE BFASTmonitor implementations were high. At each site, the spatial agreement was more than 97%, whereas the temporal agreement was over 94%. The high spatial and temporal agreement show that we have properly translated and implemented the BFASTmonitor algorithm on GEE. Naturally, due to different numerical solvers being used for regression model fitting in R and GEE, small differences could be observed in the outputs. These differences were most noticeable at the dry tropical forest and miombo woodland sites, where the forest exhibits strong seasonality. To make GEE BFASTmonitor accessible to non-technical users, we developed a web application with simplified user interface. We also created a JavaScript-based GEE BFASTmonitor package that can be imported as a module. Overall, our GEE BFASTmonitor implementation fills an important gap in large-area environmental change monitoring using earth observation data.


2021 ◽  
Vol 13 (13) ◽  
pp. 2428
Author(s):  
Rolf Simoes ◽  
Gilberto Camara ◽  
Gilberto Queiroz ◽  
Felipe Souza ◽  
Pedro R. Andrade ◽  
...  

The development of analytical software for big Earth observation data faces several challenges. Designers need to balance between conflicting factors. Solutions that are efficient for specific hardware architectures can not be used in other environments. Packages that work on generic hardware and open standards will not have the same performance as dedicated solutions. Software that assumes that its users are computer programmers are flexible but may be difficult to learn for a wide audience. This paper describes sits, an open-source R package for satellite image time series analysis using machine learning. To allow experts to use satellite imagery to the fullest extent, sits adopts a time-first, space-later approach. It supports the complete cycle of data analysis for land classification. Its API provides a simple but powerful set of functions. The software works in different cloud computing environments. Satellite image time series are input to machine learning classifiers, and the results are post-processed using spatial smoothing. Since machine learning methods need accurate training data, sits includes methods for quality assessment of training samples. The software also provides methods for validation and accuracy measurement. The package thus comprises a production environment for big EO data analysis. We show that this approach produces high accuracy for land use and land cover maps through a case study in the Cerrado biome, one of the world’s fast moving agricultural frontiers for the year 2018.


2021 ◽  
Author(s):  
Edzer Pebesma ◽  
Patrick Griffiths ◽  
Christian Briese ◽  
Alexander Jacob ◽  
Anze Skerlevaj ◽  
...  

<p>The OpenEO API allows the analysis of large amounts of Earth Observation data using a high-level abstraction of data and processes. Rather than focusing on the management of virtual machines and millions of imagery files, it allows to create jobs that take a spatio-temporal section of an image collection (such as Sentinel L2A), and treat it as a data cube. Processes iterate or aggregate over pixels, spatial areas, spectral bands, or time series, while working at arbitrary spatial resolution. This pattern, pioneered by Google Earth Engine™ (GEE), lets the user focus on the science rather than on data management.</p><p>The openEO H2020 project (2017-2020) has developed the API as well as an ecosystem of software around it, including clients (JavaScript, Python, R, QGIS, browser-based), back-ends that translate API calls into existing image analysis or GIS software or services (for Sentinel Hub, WCPS, Open Data Cube, GRASS GIS, GeoTrellis/GeoPySpark, and GEE) as well as a hub that allows querying and searching openEO providers for their capabilities and datasets. The project demonstrated this software in a number of use cases, where identical processing instructions were sent to different implementations, allowing comparison of returned results.</p><p>A follow-up, ESA-funded project “openEO Platform” realizes the API and progresses the software ecosystem into operational services and applications that are accessible to everyone, that involve federated deployment (using the clouds managed by EODC, Terrascope, CreoDIAS and EuroDataCube), that will provide payment models (“pay per compute job”) conceived and implemented following the user community needs and that will use the EOSC (European Open Science Cloud) marketplace for dissemination and authentication. A wide range of large-scale cases studies will demonstrate the ability of the openEO Platform to scale to large data volumes.  The case studies to be addressed include on-demand ARD generation for SAR and multi-spectral data, agricultural demonstrators like crop type and condition monitoring, forestry services like near real time forest damage assessment as well as canopy cover mapping, environmental hazard monitoring of floods and air pollution as well as security applications in terms of vessel detection in the mediterranean sea.</p><p>While the landscape of cloud-based EO platforms and services has matured and diversified over the past decade, we believe there are strong advantages for scientists and government agencies to adopt the openEO approach. Beyond the absence of vendor/platform lock-in or EULA’s we mention the abilities to (i) run arbitrary user code (e.g. written in R or Python) close to the data, (ii) carry out scientific computations on an entirely open source software stack, (iii) integrate different platforms (e.g., different cloud providers offering different datasets), and (iv) help create and extend this software ecosystem. openEO uses the OpenAPI standard, aligns with modern OGC API standards, and uses the STAC (SpatioTemporal Asset Catalog) to describe image collections and image tiles.</p>


2020 ◽  
Vol 12 (19) ◽  
pp. 3120
Author(s):  
Luojia Hu ◽  
Nan Xu ◽  
Jian Liang ◽  
Zhichao Li ◽  
Luzhen Chen ◽  
...  

A high resolution mangrove map (e.g., 10-m), including mangrove patches with small size, is urgently needed for mangrove protection and ecosystem function estimation, because more small mangrove patches have disappeared with influence of human disturbance and sea-level rise. However, recent national-scale mangrove forest maps are mainly derived from 30-m Landsat imagery, and their spatial resolution is relatively coarse to accurately characterize the extent of mangroves, especially those with small size. Now, Sentinel imagery with 10-m resolution provides an opportunity for generating high-resolution mangrove maps containing these small mangrove patches. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and/or Sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features of random forest to classify mangroves in China. We found that Sentinel-2 (F1-Score of 0.895) is more effective than Sentinel-1 (F1-score of 0.88) in mangrove extraction, and a combination of SAR and MSI imagery can get the best accuracy (F1-score of 0.94). The 10-m mangrove map was derived by combining SAR and MSI data, which identified 20003 ha mangroves in China, and the area of small mangrove patches (<1 ha) is 1741 ha, occupying 8.7% of the whole mangrove area. At the province level, Guangdong has the largest area (819 ha) of small mangrove patches, and in Fujian, the percentage of small mangrove patches is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest map is expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of the mangrove forest.


2019 ◽  
Vol 11 (24) ◽  
pp. 3023 ◽  
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Jiangning Yang ◽  
Xidong Chen ◽  
...  

The Google Earth Engine (GEE) has emerged as an essential cloud-based platform for land-cover classification as it provides massive amounts of multi-source satellite data and high-performance computation service. This paper proposed an automatic land-cover classification method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy (OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median composited monthly features) generated from all available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly features outperformed the percentile features, giving an average OA of 80% against 77%. In addition, the monthly features composited using the median outperformed those composited using the maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%. Therefore, the proposed method is able to generate accurate land-cover mapping automatically based on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.


2020 ◽  
Vol 12 (17) ◽  
pp. 2735 ◽  
Author(s):  
Carlos M. Souza ◽  
Julia Z. Shimbo ◽  
Marcos R. Rosa ◽  
Leandro L. Parente ◽  
Ane A. Alencar ◽  
...  

Brazil has a monitoring system to track annual forest conversion in the Amazon and most recently to monitor the Cerrado biome. However, there is still a gap of annual land use and land cover (LULC) information in all Brazilian biomes in the country. Existing countrywide efforts to map land use and land cover lack regularly updates and high spatial resolution time-series data to better understand historical land use and land cover dynamics, and the subsequent impacts in the country biomes. In this study, we described a novel approach and the results achieved by a multi-disciplinary network called MapBiomas to reconstruct annual land use and land cover information between 1985 and 2017 for Brazil, based on random forest applied to Landsat archive using Google Earth Engine. We mapped five major classes: forest, non-forest natural formation, farming, non-vegetated areas, and water. These classes were broken into two sub-classification levels leading to the most comprehensive and detailed mapping for the country at a 30 m pixel resolution. The average overall accuracy of the land use and land cover time-series, based on a stratified random sample of 75,000 pixel locations, was 89% ranging from 73 to 95% in the biomes. The 33 years of LULC change data series revealed that Brazil lost 71 Mha of natural vegetation, mostly to cattle ranching and agriculture activities. Pasture expanded by 46% from 1985 to 2017, and agriculture by 172%, mostly replacing old pasture fields. We also identified that 86 Mha of the converted native vegetation was undergoing some level of regrowth. Several applications of the MapBiomas dataset are underway, suggesting that reconstructing historical land use and land cover change maps is useful for advancing the science and to guide social, economic and environmental policy decision-making processes in Brazil.


2020 ◽  
Vol 496 (1) ◽  
pp. 629-637
Author(s):  
Ce Yu ◽  
Kun Li ◽  
Shanjiang Tang ◽  
Chao Sun ◽  
Bin Ma ◽  
...  

ABSTRACT Time series data of celestial objects are commonly used to study valuable and unexpected objects such as extrasolar planets and supernova in time domain astronomy. Due to the rapid growth of data volume, traditional manual methods are becoming extremely hard and infeasible for continuously analysing accumulated observation data. To meet such demands, we designed and implemented a special tool named AstroCatR that can efficiently and flexibly reconstruct time series data from large-scale astronomical catalogues. AstroCatR can load original catalogue data from Flexible Image Transport System (FITS) files or data bases, match each item to determine which object it belongs to, and finally produce time series data sets. To support the high-performance parallel processing of large-scale data sets, AstroCatR uses the extract-transform-load (ETL) pre-processing module to create sky zone files and balance the workload. The matching module uses the overlapped indexing method and an in-memory reference table to improve accuracy and performance. The output of AstroCatR can be stored in CSV files or be transformed other into formats as needed. Simultaneously, the module-based software architecture ensures the flexibility and scalability of AstroCatR. We evaluated AstroCatR with actual observation data from The three Antarctic Survey Telescopes (AST3). The experiments demonstrate that AstroCatR can efficiently and flexibly reconstruct all time series data by setting relevant parameters and configuration files. Furthermore, the tool is approximately 3× faster than methods using relational data base management systems at matching massive catalogues.


Sign in / Sign up

Export Citation Format

Share Document