scholarly journals USING UAV-BASED 3D IMAGES OF INDIVIDUAL TREE SPECIES IN DISTANCE EDUCATION IN FORESTRY

Author(s):  
Z. Uçar ◽  
A. E. Akay

Abstract. Distance education has been offered for years, but the integration of technological developments and opportunities into education has recently increased its popularity and event it became an indispensable method during the Covid-19 pandemic period. In distance education, accessing all class materials such as lecture presentations, class notes, reading materials, videos, live chats or class hours, and archive records allow students (participants) to learn without being in the same environments with teachers or learners. Technology has made vast contributions to the field of education. For instance, 3D as a teaching tool for the class attracts students’ attention, makes the learning process more enjoyable, and increases participation. In particular, for the disciplines, such as forestry, earth, and environmental sciences, which require laboratory exercises, field observation, field trips, and in-situ measurements, 3D modeling has provided many benefits in distance education. It enables 3D demonstration of the individual tree species to develop a virtual field laboratory. This study focused on the data sources and techniques to generate a 3D model of the individual tree species that forestry students used for distance education. The capabilities of the method in the generation of 3D models were evaluated by using UAV-based SfM photogrammetry. The results indicated that implementing 3D images of individual tree species can be a promising method that may increase the interest, interaction and satisfaction of the students in distance education in forestry.

2021 ◽  
Author(s):  
Madeline S. Marshall ◽  
Melinda C. Higley

Abstract. Field experiences are a critical component of undergraduate geoscience education; however, traditional onsite field experiences are not always practical due to accessibility, and the popularity of alternative modes of learning in higher education is increasing. One way to support student access to field experiences is through virtual field trips, implemented either independently or in conjunction with in-person field trips. We created a virtual field trip (VFT) to Grand Ledge, a regionally important suite of sedimentary outcrops in central lower Michigan, USA. This VFT undertakes all stages of a field project, from question development and detailed observation through data collection to interpretation. The VFT was implemented in undergraduate Sedimentation and Stratigraphy courses at two different liberal arts institutions, with one version of the VFT conducted in-person and the other online. The VFT was presented from a locally hosted website and distributed through an online learning platform. Students completed a series of activities using field data in the form of outcrop photos, virtual 3D models of outcrops and hand samples, and photos of thin sections. Student products included annotated field notes, a stratigraphic column, a collaborative stratigraphic correlation, and a final written reflection. VFT assessment demonstrated that students successfully achieved the inquiry-oriented student learning outcomes and student reflection responses provide anecdotal evidence that the field experience was comparable to field geology onsite. This VFT is an example of successful student learning in an upper-level Sedimentation and Stratigraphy course via virtual field experience with an emphasis on local geology.


2021 ◽  
Author(s):  
Simon Buckley ◽  
John Howell ◽  
Nicole Naumann ◽  
Conor Lewis ◽  
Kari Ringdal ◽  
...  

<p><strong>V3Geo </strong>is a cloud-based repository for virtual 3D models in geoscience, allowing storage, searching tools and visualisation of 3D models typically acquired through photogrammetry (structure-from-motion), laser scanning or other laboratory-based 3D modelling methods. The platform has been developed to store and access 3D models at the range of scales and applications required by geoscientists – from microscopic, hand samples and fossils through to outcrop sections covering metres to tens of kilometres. A 3D web viewer efficiently streams the model data over the Internet connection, allowing 3D models to be explored interactively. A measurement tool makes it possible for user to measure simple dimensions, such as widths, thicknesses, fault throws and more. V3Geo differs from other services in that it allows very large models (consisting of multiple sections), is designed to include additional interpretations in future versions, and focuses specifically on geoscience through metadata and a classification schema.</p><p>The initial version of V3Geo was released in 2020 in reaction to the COVID-19 pandemic, with the aim of providing virtual tools in a time of cancelled field excursions, field-based courses and fieldwork. The repository has been accepting community contributions, based on a guideline for preparing and submitting high quality 3D datasets. Contributions are subject to a technical review to ensure underlying quality and reliability for scientific and professional usage. Model description pages give an overview of the datasets, with references, and datasets themselves are assigned Creative Commons licences. The 3D viewer can be embedded in webpages, making it easy to include V3Geo models in virtual teaching resources. V3Geo allows increased accessibility to field localities when travel or mobility is restricted, as well as providing the foundation for virtual field trips. The database currently includes around 200 virtual 3D models from around the world, and will continue to develop and grow, aiming to become a valuable resource for the geoscience community. Future updates will include tools to facilitate upload and technical review, interpretations and Digital Object Identifiers.</p>


2016 ◽  
Vol 8 (12) ◽  
pp. 1034 ◽  
Author(s):  
Songqiu Deng ◽  
Masato Katoh ◽  
Xiaowei Yu ◽  
Juha Hyyppä ◽  
Tian Gao

2020 ◽  
Author(s):  
Riccardo Rocca

<p>This presentation describes a workflow to enhance the 3D model of a geological outcrop cut across by a regional strike-slip fault located in the Venezuelan Andes.</p><p>This fault (Boconó Fault) has been active since the Early Holocene time and has affected the landscape by displacing the rivers course and the geometry of ancient glacial moraines.</p><p>One of these moraines (Los Zerpa) was studied in detail in 1983 by geologist C. Schubert, who described its evolution with a series of hand drawn panels.</p><p>In 2015 the same area was acquired by the author with a drone survey and rendered as a digital 3D model. More recently the same model has been improved by adding also the interpretation made in the 80’s, adapted to 3D in the form of geometrical elements (lineaments and surfaces) and animations showing the different stages of evolution.</p><p>The fault model can now be publicly accessed over the internet and the users can observe and animate its evolution in 3D and understand the geological processes more intuitively (https://riccardorocca.github.io/home/Los_Zerpa.html).</p><p>This result has been achieved by editing the original model with free software which is more typically used for computer games, namely "Blender" (a 3D editor) and "Sketchfab" (a publishing platform for 3D models). Furthermore, the “Sketchfab” display can be programmed in Javascript, adding widgets that allow the users to interact with the scene by hiding/showing/moving specific elements of the model.</p><p>This workflow is proposed as an example that can be applied to other 3D models of geological faults and other geological features, so that the geological concepts can be represented more intuitively and made accessible to a large audience. With these improvements the models would be a more valuable support to, for instance, published papers and virtual field-trips.</p>


2020 ◽  
Vol 8 (4) ◽  
pp. 310-333
Author(s):  
Sowmya Natesan ◽  
Costas Armenakis ◽  
Udayalakshmi Vepakomma

Tree species identification at the individual tree level is crucial for forest operations and management, yet its automated mapping remains challenging. Emerging technology, such as the high-resolution imagery from unmanned aerial vehicles (UAV) that is now becoming part of every forester’s surveillance kit, can potentially provide a solution to better characterize the tree canopy. To address this need, we have developed an approach based on a deep Convolutional Neural Network (CNN) to classify forest tree species at the individual tree-level that uses high-resolution RGB images acquired from a consumer-grade camera mounted on a UAV platform. This work explores the ability of the Dense Convolutional Network (DenseNet) to classify commonly available economic coniferous tree species in eastern Canada. The network was trained using multitemporal images captured under varying acquisition parameters to include seasonal, temporal, illumination, and angular variability. Validation of this model using distinct images over a mixed-wood forest in Ontario, Canada, showed over 84% classification accuracy in distinguishing five predominant species of coniferous trees. The model remains highly robust even when using images taken during different seasons and times, and with varying illumination and angles.


2021 ◽  
Vol 64 (1) ◽  
pp. 13-30
Author(s):  
Dan Gafta ◽  
Annik Schnitzler ◽  
Déborah Closset-Kopp ◽  
Vasile Cristea

Neighbourhood models are useful tools for understanding the role of positive and negative interactions in maintaining the tree species diversity in mixed forests. Under such a presumption, we aimed at testing several hypotheses concerning the mechanisms of autogenic species coexistence in an old-growth, beech-fir-spruce stand, which is part of the Slătioara forest reserve (Eastern Carpathians). Univariate/bivariate spatial point pattern analyses, the individual tree species-area relationship, the species mingling analysis and generalised linear mixed models of neighbour interference were applied on data concerning the position and allometry of all saplings and trees occurring within a 0.24 ha plot. The monospecific distribution of either beech or spruce saplings did not support the spatial segregation hypothesis. There was no evidence of conspecific negative distance dependence, as no spatial segregation was detected between the saplings and trees of any species. Within 4 m-neighbourhood, the beech saplings appeared as diversity accumulators, which might be indicative of indirect facilitation (e.g., herd protection hypothesis). At tree stage, none of the three species showed either accumulator or repeller patterns in their neighbourhood with respect to sapling species richness. Signals of positive and negative interspecific association were found in tree-sized beech (at scales of 10 to 20 m) and spruce (at scales of 4 to 17 m), respectively. The former, highly interspersed pattern is in accordance with the hypothesis of positive complementary effects, whereas the latter, poorly intermingled pattern is probably linked to the unexpected, positive neighbouring effect of spruce trees on the stem growth of their conspecific saplings. Such self-favouring process might be due to a facilitative below-ground mechanism. Conversely, the beech saplings were suppressed through interference from the neighbouring conspecific trees. The beech appears to be the key promoter of tree species coexistence in the study forest stand, in contrast to the low interspersion of spruce in the overstorey leading to lower local tree diversity.


2021 ◽  
Author(s):  
Simon John Buckley ◽  
John Anthony Howell ◽  
Nicole Naumann ◽  
Conor Lewis ◽  
Magda Chmielewska ◽  
...  

Abstract. V3Geo is a cloud-based repository for publishing virtual 3D models in geoscience. The system allows storage, search and visualisation of models typically acquired using techniques such as photogrammetry and laser scanning. The platform has been developed to handle models at the range of scales typically used by geoscientists, from microscopic, hand samples and fossils through to outcrop sections covering metres to tens of kilometres. The cloud storage system serves the models to a purpose-built 3D web viewer. Models are tiled to ensure efficient streaming over the internet. The web viewer allows 3D models to be interactively explored without the need for specialist software to be installed. A measurement tool enables users to measure simple dimensions, such as widths, thicknesses, fault throws and more. V3Geo allows very large models comprising multiple sections and is designed to include additional interpretation layers. The specific focus on geoscience data is supported by defined metadata and a classification schema. Public and private storage are available, and public models are assigned Creative Commons licenses to govern content usage. This paper presents V3Geo as a sustainable resource for the geoscience community, including the motivation, main characteristics, and features. Example usage scenarios are highlighted: from undergraduate geology teaching, supporting virtual geoscience education, and preparing virtual field trips based on V3Geo models. Finally, best practise guidelines for preparing 3D model contributions for publication on V3Geo are included as an Appendix.


Sign in / Sign up

Export Citation Format

Share Document