scholarly journals Lidar Studies on The Optical Characteristics of High Altitude Cirrus Clouds at A Low Latitiude Station, Gadanki (13.5°N , 79.2°E ) India

Author(s):  
G. S. Jayeshlal ◽  
M. Satyanarayana ◽  
G. S. Motty ◽  
R. K. Dhaman ◽  
V. Krishnakumar ◽  
...  

Light Detection and Ranging (LIDAR) which is analogous to Radio Detection And Ranging (RADAR), has become an important and unique technology for atmospheric research and applications. The technology is widely used for the remote sensing of the Earth’s atmosphere, oceans, vegetation and the characteristics of Earth’s topography. Remote sensing of atmosphere, for its structure, composition and dynamics, is one of the proven applications of the lidar systems. More importantly the lidar technique is applied for the study of clouds, aerosols and minor constituents in the atmosphere. It provides the information on the above with good spatial and temporal resolutions and accuracy. The high altitude cirrus clouds which play an important role in the Earth’s radiative budget and global climate can be studied by using the LIDAR system. These clouds absorb long-wave outgoing radiation from Earth’s surface while reflecting part of the incoming short-wave solar radiation. Lidar measurements are useful in deriving the altitude, top height, bottom height and the optical properties of cirrus clouds, which are essential in understanding the cloud-radiation effects. The optical depth, the effective lidar ratio and the depolarization of the clouds are also derived by inverting the lidar signals from the cirrus clouds. In this paper we present the results on the lidar derived optical and microphysical properties of the cirrus clouds at a tropical station Gadanki (13.5°N, 79.2°E) India during two year period from 2009 to210. The seasonal variations of the cloud properties during the observation period are presented and discussed with reference to earlier period.

2014 ◽  
Vol 7 (9) ◽  
pp. 3095-3112 ◽  
Author(s):  
P. Sawamura ◽  
D. Müller ◽  
R. M. Hoff ◽  
C. A. Hostetler ◽  
R. A. Ferrare ◽  
...  

Abstract. Retrievals of aerosol microphysical properties (effective radius, volume and surface-area concentrations) and aerosol optical properties (complex index of refraction and single-scattering albedo) were obtained from a hybrid multiwavelength lidar data set for the first time. In July 2011, in the Baltimore–Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne (in situ and remote sensing) and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar data set combines ground-based elastic backscatter lidar measurements at 355 nm with airborne High-Spectral-Resolution Lidar (HSRL) measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm that were obtained less than 5 km apart from each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor in such discrepancies.


Cirrus ◽  
2002 ◽  
Author(s):  
David O’C. Starr ◽  
Markus Quante

Advancement in the understanding of cirrus clouds and their life cycle comes through symbiotic use of models, observations, and related concepts (fig. 18.1). Models of cirrus clouds represent an integration of our knowledge of cirrus cloud properties and processes. They provide a capacity to extend knowledge and enhance understanding in ways that complement existing observational capabilities. Models can be used to develop new theories, such as parameterizations, and focus science issues and observational requirements and developments. For example, early model results of Starr and Cox (1985a) and Starr (1987b) predicted that fine cellular structure (~lkm or less) would be found in the upper part of extended stratiform cirrus clouds. This prediction was confirmed when high-frequency sensors were deployed both for active remote sensing (Sassen et al. 1990a, 1995) and later for in-situ measurements (Quante and Brown 1992; Gultepe et al. 1995; Quante et al. 1996). Sampling rates of 10Hz, or better, are now accepted as a minimum requirement for resolving cirrus cloud internal structure and circulation where 1-Hz or coarser measurements were previously used. Similarly, discrepancies between observed cloud radiative properties and calculations (theory) based on corresponding in-situ observations of cloud microphysical properties (Sassen et al. 1990b) led to the development of improved observing capabilities for small ice crystals (Arnott et al. 1994; Miloshevich and Heymsfield 1997; Lawson et al. 1998). Such sensors are now regarded as part of the standard complement when doing in-situ microphysical measurements in cirrus. At the same time, observations are absolutely essential in developing and evaluating cloud models. No cloud modeler wants to apply a model or theory too far beyond the limits of what can be observationally confirmed, at least in gross terms. The third aspect of this triad is concepts. Although models and observations can lead to predictions or diagnosis of unexpected relationships, they are each limited by the concepts that were used in their design and/or implementation. In the end, new concepts arising from analogy to other phenomena and/or from synergistic integration of existing knowledge can lead to new understanding, new models, new instruments, and new sampling strategies (fig. 18.1). Chapter 17 focuses on observations of internal cloud circulation and structure.


Cirrus ◽  
2002 ◽  
Author(s):  
Kenneth Sassen ◽  
Gerald Mace

Cirrus clouds have only recently been recognized as having a significant influence on weather and climate through their impact on the radiative energy budget of the atmosphere. In addition, the unique difficulties presented by the study of cirrus put them on the “back burner” of atmospheric research for much of the twentieth century. Foremost, because they inhabit the frigid upper troposphere, their inaccessibility has hampered intensive research. Other factors have included a lack of in situ instrumentation to effectively sample the clouds and environment, and basic uncertainties in the underlying physics of ice cloud formation, growth, and maintenance. Cloud systems that produced precipitation, severe weather, or hazards to aviation were deemed more worthy of research support until the mid- 1980s. Beginning at this time, however, major field research programs such as the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE; Cox et al. 1987), International Cirrus Experiment (ICE; Raschke et al. 1990), Experimental Cloud Lidar Pilot Study (ECLIPS; Platt et al. 1994), and the Atmospheric Radiation Measurement (ARM) Program (Stokes and Schwartz 1994) have concentrated on cirrus cloud research, relying heavily on ground-based remote sensing observations combined with research aircraft. What has caused this change in research emphasis is an appreciation for the potentially significant role that cirrus play in maintaining the radiation balance of the earth-atmosphere system (Liou 1986). As climate change issues were treated more seriously, it was recognized that the effects, or feedbacks, of extensive high-level ice clouds in response to global warming could be pivotal. This fortunately came at a time when new generations of meteorological instrumentation were becoming available. Beginning in the early 1970s, major advancements were made in the fields of numerical cloud modeling and cloud measurements using aircraft probes, satellite multispectral imaging, and remote sensing with lidar, short-wavelength radar, and radiometers, all greatly facilitating cirrus research. Each of these experimental approaches have their advantages and drawbacks, and it should also be noted that a successful cloud modeling effort relies on field data for establishing boundary conditions and providing case studies for validation. Although the technologies created for in situ aircraft measurements can clearly provide unique knowledge of cirrus cloud thermodynamic and microphysical properties (Dowling and Radke 1990), available probes may suffer from limitations in their response to the wide range of cirrus particles and actually sample a rather small volume of cloud during any mission.


2007 ◽  
Vol 46 (3) ◽  
pp. 249-272 ◽  
Author(s):  
M. Chiriaco ◽  
H. Chepfer ◽  
P. Minnis ◽  
M. Haeffelin ◽  
S. Platnick ◽  
...  

Abstract This study compares cirrus-cloud properties and, in particular, particle effective radius retrieved by a Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)-like method with two similar methods using Moderate-Resolution Imaging Spectroradiometer (MODIS), MODIS Airborne Simulator (MAS), and Geostationary Operational Environmental Satellite imagery. The CALIPSO-like method uses lidar measurements coupled with the split-window technique that uses the infrared spectral information contained at the 8.65-, 11.15-, and 12.05-μm bands to infer the microphysical properties of cirrus clouds. The two other methods, using passive remote sensing at visible and infrared wavelengths, are the operational MODIS cloud products (using 20 spectral bands from visible to infrared, referred to by its archival product identifier MOD06 for MODIS Terra) and MODIS retrievals performed by the Clouds and the Earth’s Radiant Energy System (CERES) team at Langley Research Center (LaRC) in support of CERES algorithms (using 0.65-, 3.75-, 10.8-, and 12.05-μm bands); the two algorithms will be referred to as the MOD06 and LaRC methods, respectively. The three techniques are compared at two different latitudes. The midlatitude ice-clouds study uses 16 days of observations at the Palaiseau ground-based site in France [Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA)], including a ground-based 532-nm lidar and the MODIS overpasses on the Terra platform. The tropical ice-clouds study uses 14 different flight legs of observations collected in Florida during the intensive field experiment known as the Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE), including the airborne cloud-physics lidar and the MAS. The comparison of the three methods gives consistent results for the particle effective radius and the optical thickness but discrepancies in cloud detection and altitudes. The study confirms the value of an active remote sensing method (CALIPSO like) for the study of subvisible ice clouds, in both the midlatitudes and Tropics. Nevertheless, this method is not reliable in optically very thick tropical ice clouds, because of their particular microphysical properties.


2009 ◽  
Vol 9 (22) ◽  
pp. 8799-8811 ◽  
Author(s):  
P. Di Girolamo ◽  
D. Summa ◽  
R.-F. Lin ◽  
T. Maestri ◽  
R. Rizzi ◽  
...  

Abstract. Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of the Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements, only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows the determination of the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicate that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results illustrated in this study demonstrate that Raman lidars, like the one used in this study, can resolve the spatial and temporal scales required for the study of cirrus cloud microphysical processes and appear sensitive enough to reveal and quantify upper tropospheric humidification associated with cirrus cloud sublimation.


2017 ◽  
Vol 10 (5) ◽  
pp. 1653-1664 ◽  
Author(s):  
Benedikt Urbanek ◽  
Silke Groß ◽  
Andreas Schäfler ◽  
Martin Wirth

Abstract. Cirrus clouds impose high uncertainties on climate prediction, as knowledge on important processes is still incomplete. For instance it remains unclear how cloud microphysical and radiative properties change as the cirrus evolves. Recent studies classify cirrus clouds into categories including in situ, orographic, convective and liquid origin clouds and investigate their specific impact. Following this line, we present a novel scheme for the classification of cirrus clouds that addresses the need to determine specific stages of cirrus evolution. Our classification scheme is based on airborne Differential Absorption and High Spectral Resolution Lidar measurements of atmospheric water vapor, aerosol depolarization, and backscatter, together with model temperature fields and simplified parameterizations of freezing onset conditions. It identifies regions of supersaturation with respect to ice (ice-supersaturated regions, ISSRs), heterogeneous and homogeneous nucleation, depositional growth, and ice sublimation and sedimentation with high spatial resolution. Thus, all relevant stages of cirrus evolution can be classified and characterized. In a case study of a gravity lee-wave-influenced cirrus cloud, encountered during the ML-CIRRUS flight campaign, the applicability of our classification is demonstrated. Revealing the structure of cirrus clouds, this valuable tool might help to examine the influence of evolution stages on the cloud's net radiative effect and to investigate the specific variability of optical and microphysical cloud properties in upcoming research.


2021 ◽  
Author(s):  
Qiang Li ◽  
Silke Groß

Abstract. By inducing linear contrails and contrail cirrus, air traffic has a main impact on the ice cloud coverage and occurrence. During the COVID-19 pandemic the civil air traffic over Europe was significantly reduced: in March and April 2020 to about 80 % compared to the year before. This unique situation allows to study the effect of air traffic on cirrus clouds. This work investigates based on satellite lidar measurements if and how cirrus cloud properties and occurrence changed over Europe in the course of COVID-19. Cirrus cloud properties are analyzed for different years, which showed similar meteorological conditions for March and April as they were found for 2020. Comparing these years shows that the cirrus cloud occurrence was reduced by about 30 % with smaller cloud thicknesses found in April 2020. The average thickness of cirrus clouds was reduced to 1.18 km in April 2020 compared to a value of 1.40 km under normal conditions. In addition, the cirrus clouds measured in April 2020 possess smaller mean values of the particle linear depolarization ratio (PLDR) than the previous years at high significance level, especially at colder temperatures (T 


2015 ◽  
Vol 5 (1) ◽  
pp. 11-16 ◽  
Author(s):  
G. Milinevsky ◽  
Ya. Yatskiv ◽  
O. Degtyaryov ◽  
I. Syniavskyi ◽  
Yu. Ivanov ◽  
...  

The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project Aerosol-UA that obtains data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The project is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.


Sign in / Sign up

Export Citation Format

Share Document