scholarly journals Early forest fire detection using low-energy hydrogen sensors

2013 ◽  
Vol 2 (2) ◽  
pp. 171-177
Author(s):  
K. Nörthemann ◽  
J.-E. Bienge ◽  
J. Müller ◽  
W. Moritz

Abstract. Most huge forest fires start in partial combustion. In the beginning of a smouldering fire, emission of hydrogen in low concentration occurs. Therefore, hydrogen can be used to detect forest fires before open flames are visible and high temperatures are generated. We have developed a hydrogen sensor comprising of a metal/solid electrolyte/insulator/semiconductor (MEIS) structure which allows an economical production. Due to the low energy consumption, an autarkic working unit in the forest was established. In this contribution, first experiments are shown demonstrating the possibility to detect forest fires at a very early stage using the hydrogen sensor.

2014 ◽  
Vol 51 (4) ◽  
pp. 971-993 ◽  
Author(s):  
Xavier Silvani ◽  
Frédéric Morandini ◽  
Eric Innocenti ◽  
Sylvestre Peres

2019 ◽  
Vol 8 (4) ◽  
pp. 9126-9132

As we all know forests are the main source of oxygen and its protection is essential to sustain the human and animal race. Since we all learnt about the necessity of air, yet we lack at taking measures to protect our mother forest. Forest Fires are the main reason for the deforestation and destruction of trees and wildlife. Forest Fires are due to these two ways either by man-made or naturally caused. In either way we have to pay for the loss occurred because we have left with only certain area for the forest. So, we have to take measures to prevent forest fire at its early stage. The main aim of our project is to design and implement an IoT based hardware module that could detect the fire and prevent it by alerting the monitoring stations with an alert message and also provides location to the nearest base station. An automatic message will be sent to the nearest base station in addition to these, it has a 360 degrees rotation camera which helps to provide continuous surveillance. We can rotate the camera in any direction from the base station itself. A buzzer that alarms when the incident is happening and a water motor, this water motor will be on automatically. We can also find location where the incident is taking place with the help of Wi-Fi module. This device helps in identifying the fire at its early stage and helps in the prevention of spread all over the forest.


2012 ◽  
Author(s):  
Kai Nörthemann ◽  
Michael Dallmer ◽  
Werner Moritz ◽  
Jan-Eric Bienge ◽  
Jürgen Müller ◽  
...  

1987 ◽  
Vol 19 (3-4) ◽  
pp. 391-400 ◽  
Author(s):  
Zhou Ding ◽  
Cai Wei Min ◽  
Wang Qun Hui

This paper studies the use of bipolar-particles-electrodes in the decolorization of dyeing effluents. Treatment of highly colored solutions of various soluble dyes (such as direct, reactive, cationic or acid dyes) and also samples of dyeing effluents gave rise to an almost colorless transparent liquid, with removal of CODcr and BOD5 being as high as over 80%. The method is characterized by its high efficiency, low energy consumption and long performance life. A discussion of the underlying principle is given.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 768
Author(s):  
Jin Pan ◽  
Xiaoming Ou ◽  
Liang Xu

Forest fires are serious disasters that affect countries all over the world. With the progress of image processing, numerous image-based surveillance systems for fires have been installed in forests. The rapid and accurate detection and grading of fire smoke can provide useful information, which helps humans to quickly control and reduce forest losses. Currently, convolutional neural networks (CNN) have yielded excellent performance in image recognition. Previous studies mostly paid attention to CNN-based image classification for fire detection. However, the research of CNN-based region detection and grading of fire is extremely scarce due to a challenging task which locates and segments fire regions using image-level annotations instead of inaccessible pixel-level labels. This paper presents a novel collaborative region detection and grading framework for fire smoke using a weakly supervised fine segmentation and a lightweight Faster R-CNN. The multi-task framework can simultaneously implement the early-stage alarm, region detection, classification, and grading of fire smoke. To provide an accurate segmentation on image-level, we propose the weakly supervised fine segmentation method, which consists of a segmentation network and a decision network. We aggregate image-level information, instead of expensive pixel-level labels, from all training images into the segmentation network, which simultaneously locates and segments fire smoke regions. To train the segmentation network using only image-level annotations, we propose a two-stage weakly supervised learning strategy, in which a novel weakly supervised loss is proposed to roughly detect the region of fire smoke, and a new region-refining segmentation algorithm is further used to accurately identify this region. The decision network incorporating a residual spatial attention module is utilized to predict the category of forest fire smoke. To reduce the complexity of the Faster R-CNN, we first introduced a knowledge distillation technique to compress the structure of this model. To grade forest fire smoke, we used a 3-input/1-output fuzzy system to evaluate the severity level. We evaluated the proposed approach using a developed fire smoke dataset, which included five different scenes varying by the fire smoke level. The proposed method exhibited competitive performance compared to state-of-the-art methods.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 940
Author(s):  
Nicoleta Cristina Gaitan

Recent market studies show that the market for remote monitoring devices of different medical parameters will grow exponentially. Globally, more than 4 million individuals will be monitored remotely from the perspective of different health parameters by 2023. Of particular importance is the way of remote transmission of the information acquired from the medical sensors. At this time, there are several methods such as Bluetooth, WI-FI, or other wireless communication interfaces. Recently, the communication based on LoRa (Long Range) technology has had an explosive development that allows the transmission of information over long distances with low energy consumption. The implementation of the IoT (Internet of Things) applications using LoRa devices based on open Long Range Wide-Area Network (LoRaWAN) protocol for long distances with low energy consumption can also be used in the medical field. Therefore, in this paper, we proposed and developed a long-distance communication architecture for medical devices based on the LoRaWAN protocol that allows data communications over a distance of more than 10 km.


Sign in / Sign up

Export Citation Format

Share Document