scholarly journals Coastal flooding: impact of waves on storm surge during extremes – a case study for the German Bight

2016 ◽  
Vol 16 (11) ◽  
pp. 2373-2389 ◽  
Author(s):  
Joanna Staneva ◽  
Kathrin Wahle ◽  
Wolfgang Koch ◽  
Arno Behrens ◽  
Luciana Fenoglio-Marc ◽  
...  

Abstract. This study addresses the impact of wind, waves, tidal forcing and baroclinicity on the sea level of the German Bight during extreme storm events. The role of wave-induced processes, tides and baroclinicity is quantified, and the results are compared with in situ measurements and satellite data. A coupled high-resolution modelling system is used to simulate wind waves, the water level and the three-dimensional hydrodynamics. The models used are the wave model WAM and the circulation model GETM. The two-way coupling is performed via the OASIS3-MCT coupler. The effects of wind waves on sea level variability are studied, accounting for wave-dependent stress, wave-breaking parameterization and wave-induced effects on vertical mixing. The analyses of the coupled model results reveal a closer match with observations than for the stand-alone circulation model, especially during the extreme storm Xaver in December 2013. The predicted surge of the coupled model is significantly enhanced during extreme storm events when considering wave–current interaction processes. This wave-dependent approach yields a contribution of more than 30 % in some coastal areas during extreme storm events. The contribution of a fully three-dimensional model compared with a two-dimensional barotropic model showed up to 20 % differences in the water level of the coastal areas of the German Bight during Xaver. The improved skill resulting from the new developments justifies further use of the coupled-wave and three-dimensional circulation models in coastal flooding predictions.

Author(s):  
Joanna Staneva ◽  
Kathrin Wahle ◽  
Wolfgang Koch ◽  
Arno Behrens ◽  
Luciana Fenoglio-Marc ◽  
...  

Abstract. This study addresses impact of wind, waves, tidal forcing and baroclinicity on the sea level of the German Bight during extremes. The role of waves-induced processes, tides and baroclinicity is quantified and the results are compared with observational data that include various in-situ measurements as well as satellite data. A coupled, high-resolution, model system is used to simulate the wind waves, water level and three-dimensional hydrodynamics. The effects of the wind waves on sea level variability are studied accounting for wave-dependent stress, wave-breaking parameterization and wave-induced effects on vertical mixing. The analyses of the coupled model results reveal a closer match with observations than for the stand-alone circulation model, especially during the extreme storm Xaver in December 2013. The predicted surge of the coupled model enhances significantly during extremes when considering wave-current interaction processes. The wave-dependent approach yields to a contribution of more than 30 % in some coastal area during extremes. The improved skill resulting from the new developments justifies further use of coupled wave and three dimensional circulation models for improvement of coastal flooding predictions.


Author(s):  
Vladimir Fomin ◽  
Vladimir Fomin ◽  
Dmitrii Alekseev ◽  
Dmitrii Alekseev ◽  
Dmitrii Lazorenko ◽  
...  

Storm surges and wind waves are ones of the most important hydrological characteristics, which determine dynamics of the Sea of Azov. Extreme storm surges in Taganrog Bay and flooding in the Don Delta can be formed under the effect of strong western winds. In this work the sea level oscillations and wind waves in the Taganrog Bay were simulated by means of the coupled SWAN+ADCIRC numerical model, taking into account the flooding and drying mechanisms. The calculations were carried out on an unstructured mesh with high resolution. The wind and atmospheric pressure fields for the extreme storm from 20 to 28 of September, 2014 obtained from WRF regional atmospheric model were used as forcing. The analysis of simulation results showed the following. The western and northern parts of the Don Delta were the most flood-prone during the storm. The size of the flooded area of the Don Delta exceeded 50%. Interaction of storm surge and wind wave accelerated the flooding process, increased the size of the flooded area and led to the intensification of wind waves in the upper of Taganrog Bay due to the general rise of the sea level.


2016 ◽  
Vol 11 (5) ◽  
pp. 964-972 ◽  
Author(s):  
Fuchun Lai ◽  
◽  
Luying Liu ◽  
Haijiang Liu ◽  
◽  
...  

To study wave effects on storm surge, a depth-averaged 2D numerical model based on the Delft3D-FLOW model was utilized to simulate near-shore hydrodynamic responses to Typhoon Khanun. The Delft3D-WAVE model is coupled dynamically with the FLOW model and the enhanced vertical mixing, mass flux and wave set-up were considered as wave-current interaction in the coupled model. After verifying storm surge wind and pressure formulae of storm surge and optimizing calibration parameters, three numerical tests with different control variables were conducted. Model tests show that wave effects must be considered in numerical simulation. Simulating the flow-wave coupled model showed that wave-induced surge height could be as large as 0.4 m in near-shore areas for Typhoon Khanun. Comparing to its contribution to the peak surge height, wave-induced surge plays a more significant role to total surge height with respect to the time-averaged surge height in storm events. Wave-induced surge (wave setup) is in advance of typhoon propagation and becomes significant even before the typhoon landfall. Model tests demonstrate that the wave effects are driven predominantly by the storm wave, while the boundary wave contribution is rather limited.


2013 ◽  
Vol 70 (12) ◽  
pp. 3756-3779 ◽  
Author(s):  
Kaoru Sato ◽  
Takenari Kinoshita ◽  
Kota Okamoto

Abstract A new method is proposed to estimate three-dimensional (3D) material circulation driven by waves based on recently derived formulas by Kinoshita and Sato that are applicable to both Rossby waves and gravity waves. The residual-mean flow is divided into three, that is, balanced flow, unbalanced flow, and Stokes drift. The latter two are wave-induced components estimated from momentum flux divergence and heat flux divergence, respectively. The unbalanced mean flow is equivalent to the zonal-mean flow in the two-dimensional (2D) transformed Eulerian mean (TEM) system. Although these formulas were derived using the “time mean,” the underlying assumption is the separation of spatial or temporal scales between the mean and wave fields. Thus, the formulas can be used for both transient and stationary waves. Considering that the average is inherently needed to remove an oscillatory component of unaveraged quadratic functions, the 3D wave activity flux and wave-induced residual-mean flow are estimated by an extended Hilbert transform. In this case, the scale of mean flow corresponds to the whole scale of the wave packet. Using simulation data from a gravity wave–resolving general circulation model, the 3D structure of the residual-mean circulation in the stratosphere and mesosphere is examined for January and July. The zonal-mean field of the estimated 3D circulation is consistent with the 2D circulation in the TEM system. An important result is that the residual-mean circulation is not zonally uniform in both the stratosphere and mesosphere. This is likely caused by longitudinally dependent wave sources and propagation characteristics. The contribution of planetary waves and gravity waves to these residual-mean flows is discussed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Angel Amores ◽  
Marta Marcos ◽  
Rodrigo Pedreros ◽  
Gonéri Le Cozannet ◽  
Sophie Lecacheux ◽  
...  

The Maldives, with one of the lowest average land elevations above present-day mean sea level, is among the world regions that will be the most impacted by mean sea-level rise and marine extreme events induced by climate change. Yet, the lack of regional and local information on marine drivers is a major drawback that coastal decision-makers face to anticipate the impacts of climate change along the Maldivian coastlines. In this study we focus on wind-waves, the main driver of extremes causing coastal flooding in the region. We dynamically downscale large-scale fields from global wave models, providing a valuable source of climate information along the coastlines with spatial resolution down to 500 m. This dataset serves to characterise the wave climate around the Maldives, with applications in regional development and land reclamation, and is also an essential input for local flood hazard modelling. We illustrate this with a case study of HA Hoarafushi, an atoll island where local topo-bathymetry is available. This island is exposed to the highest incoming waves in the archipelago and recently saw development of an airport island on its reef via land reclamation. Regional waves are propagated toward the shoreline using a phase-resolving model and coastal inundation is simulated under different mean sea-level rise conditions of up to 1 m above present-day mean sea level. The results are represented as risk maps with different hazard levels gathering inundation depth and speed, providing a clear evidence of the impacts of the sea level rise combined with extreme wave events.


2012 ◽  
Vol 1 (33) ◽  
pp. 7
Author(s):  
Sooyoul Kim ◽  
Y. Matsumi ◽  
T. Yasuda ◽  
H. Mase

When modelling wind-driven long waves combined with tides, wind waves and surges under storm events in limited computational areas, values at open boundaries are the tidal current, the tidal water level, the wind and pressure-induced water level and current. These can be obtained from the extrapolation or the interpolation from large-scale models or observations. At the open boundary, the tide-induced water level and current are usually estimated by the astronomical tidal components. The combined wind and pressure-induced water level at the open boundary has been computed by barotropic law. However, the combined wind and pressure-induced current is ignored in most cases of modelling the wind- driven long wave combined with the tide, the wind wave and the surge. In the study, the method is proposed to estimate the combined wind and pressure-induced current at the open boundary and is described for the performance in the simple case and the real case in comparison with the Orlanski scheme modified by Miller and Thorpe (OSMT) and the passive form of the Flather’s condition (FLA).


2021 ◽  
Author(s):  
Tingfeng Wu ◽  
Boqiang Qin ◽  
Anning Huang ◽  
Yongwei Sheng ◽  
Shunxin Feng ◽  
...  

Abstract. Winds, wind waves, and turbulence are essential variables and playing critical role in regulating a series of physical and biogeochemical processes in large shallow lakes. However, parameterizing winds, waves, currents and turbulence and simulating the interaction between them in large shallow lakes haven’t been evaluated strictly because of a lack of field observations of lake hydrodynamics process. To address this problem, two process-based field observations were conducted to record the development of summer and winter wind-driven currents in Lake Taihu, a large shallow lake in China. Based on these observations and numerical experiments, a wave-current coupled model (WCCM) is developed by rebuilding expression of wind drag coefficient, introducing wave-induced radiation stress, and adopting a simple turbulence scheme, and then used to simulate wind-driven currents in Lake Taihu. The results show that, the WCCM can accurately simulate the upwelling process resulting from the wind-driven currents during the field observations. Comparing with other model, there is a 42.9 % increase of WCCM-simulated current speed which is mainly attributed to the new expression of wind drag coefficient. Meanwhile WCCM-simulated current direction and field are also improved due to the introduction of wave-induced radiation stress. Furthermore, the use of the simple turbulent scheme in the WCCM makes the simulation of the upwelling processes more efficient. The WCCM provides a sound basis for simulating shallow lake ecosystems.


2016 ◽  
Author(s):  
Kathrin Wahle ◽  
Joanna Staneva ◽  
Wolfgang Koch ◽  
Luciana Fenoglio-Marc ◽  
Ha T. M. Ho-Hagemann ◽  
...  

Abstract. Reduction of wave forecasting errors is a challenge especially in dynamically complicated coastal ocean areas as the southern part of the North Sea area – the German Bight. Coupling of different models is a favoured approach to address this issue as it accounts for the complex interactions of waves, currents and the atmosphere. Here we study the effects of coupling between an atmospheric model and a wind wave model, which in the present study is enabled through an introduction of wave induced drag in the atmosphere model. This, on one side, leads to a reduction of the surface wind speeds, and on the other side, to a reduction of simulated wave heights. The sensitivity of atmospheric parameters such as wind speed, and atmospheric pressure to wave-induced drag, in particular under storm conditions, is studied. Additionally, the impact of the two-way coupling on wave model performance is investigated. The performance of the coupled model system has been demonstrated for extreme events and calm conditions. The results revealed that the effect of coupling results in significant changes in both wind and waves. The simulations are compared to data from in-situ and satellite observations. The results indicate that the two-way coupling improves the agreement between observations and simulations for both wind and wave parameters in comparison to the one-way coupled model. In addition, the errors of the high-resolution German Bight wave model compared to the observations have been significantly reduced in the coupled model. The improved skills resulting from the proposed method justifies its implementations for both operational and climate simulations.


Author(s):  
Vladimir Fomin ◽  
Vladimir Fomin ◽  
Dmitrii Alekseev ◽  
Dmitrii Alekseev ◽  
Dmitrii Lazorenko ◽  
...  

Storm surges and wind waves are ones of the most important hydrological characteristics, which determine dynamics of the Sea of Azov. Extreme storm surges in Taganrog Bay and flooding in the Don Delta can be formed under the effect of strong western winds. In this work the sea level oscillations and wind waves in the Taganrog Bay were simulated by means of the coupled SWAN+ADCIRC numerical model, taking into account the flooding and drying mechanisms. The calculations were carried out on an unstructured mesh with high resolution. The wind and atmospheric pressure fields for the extreme storm from 20 to 28 of September, 2014 obtained from WRF regional atmospheric model were used as forcing. The analysis of simulation results showed the following. The western and northern parts of the Don Delta were the most flood-prone during the storm. The size of the flooded area of the Don Delta exceeded 50%. Interaction of storm surge and wind wave accelerated the flooding process, increased the size of the flooded area and led to the intensification of wind waves in the upper of Taganrog Bay due to the general rise of the sea level.


Author(s):  
Dongmei Xie ◽  
Qingping Zou

The coupled spectral wave and circulation model SWAN+ADCIRC was applied to investigate the wave-current interaction during storm events over Georges Bank, a large shallow submarine bank on the eastern seaboard of North America that separates Gulf of Maine from the North Atlantic Ocean. The current over the Georges Bank displays a rotary feature over a tidal cycle. The wave-induced current is in the same order as the wind-driven current and generally in the same direction as the depth-averaged tidal current, indicating strong nonlinear wave-current interaction. The magnitude of wave-induced current reaches 0.07 m/s at low tide and 0.2 m/s at the other three tidal phases. The effect of wave-current interaction on waves at the four tidal phases is also analyzed. The role of Georges Bank in dissipating wave energy is most significant at rising mid-tide and high tide, which is close to the storm peak. At rising mid-tide, the wave height is decreased by 0.3 m to 0.5 m over the majority of the bank when the wave propagates in the same direction as the current. At falling-mid tide, the wave height is increased by 0.5 m at the southern flank and decreased by 0.5 m at the northern flank of the bank.


Sign in / Sign up

Export Citation Format

Share Document