scholarly journals Coastal Flooding in the Maldives Induced by Mean Sea-Level Rise and Wind-Waves: From Global to Local Coastal Modelling

2021 ◽  
Vol 8 ◽  
Author(s):  
Angel Amores ◽  
Marta Marcos ◽  
Rodrigo Pedreros ◽  
Gonéri Le Cozannet ◽  
Sophie Lecacheux ◽  
...  

The Maldives, with one of the lowest average land elevations above present-day mean sea level, is among the world regions that will be the most impacted by mean sea-level rise and marine extreme events induced by climate change. Yet, the lack of regional and local information on marine drivers is a major drawback that coastal decision-makers face to anticipate the impacts of climate change along the Maldivian coastlines. In this study we focus on wind-waves, the main driver of extremes causing coastal flooding in the region. We dynamically downscale large-scale fields from global wave models, providing a valuable source of climate information along the coastlines with spatial resolution down to 500 m. This dataset serves to characterise the wave climate around the Maldives, with applications in regional development and land reclamation, and is also an essential input for local flood hazard modelling. We illustrate this with a case study of HA Hoarafushi, an atoll island where local topo-bathymetry is available. This island is exposed to the highest incoming waves in the archipelago and recently saw development of an airport island on its reef via land reclamation. Regional waves are propagated toward the shoreline using a phase-resolving model and coastal inundation is simulated under different mean sea-level rise conditions of up to 1 m above present-day mean sea level. The results are represented as risk maps with different hazard levels gathering inundation depth and speed, providing a clear evidence of the impacts of the sea level rise combined with extreme wave events.

2020 ◽  
Author(s):  
Riccardo Giusti ◽  
Mario Martina ◽  
Clara Armaroli ◽  
Rui Figuereido ◽  
Francesco Dottori

<p>Climate change and subsidence will likely have a significant role to increase coastal flooding risk. The socio-economic impact of inundations can be very relevant, and, in a context of climate change, it is necessary to develop effective methods for assessing coastal flood hazard suitable for large-scale studies. This work focuses on the application of a new modelling approach for mapping flooding hazard for future scenarios characterized by sea level rise and ground lowering due to subsidence. The flood intensity index approach (Iw, Dottori et al. 2015) will be used to quantitatively evaluate the flood extent. This recent methodology allows to create reliable scenarios with low computational costs. The effects of the storm surge are assessed using a base scenario corresponding to 100 years return period event. IW inputs are represented by water height set as storm level plus a part of wave height. The scenarios will be created by quantitatively combining IPCC sea level rise projections with subsidence data that will be compared to high-resolution digital terrain models. The study area of this work is the ∼205 km long coastal plain of Northern Italy, from Venice to Rimini, composed of low-lying sandy beaches and which includes the Po delta area. The coast is characterized by large portions of the territory below mean sea level and by geological features made by recent quaternary sediments which have a natural subsidence rate. In the past (1960-1980) the subsidence rate had an exceptional increase caused by excessive groundwater withdrawal for agricultural and industrial activities, human consumption and by natural gas extraction.</p>


2020 ◽  
Author(s):  
Pau Luque Lozano ◽  
Lluís Gómez-Pujol ◽  
Marta Marcos ◽  
Alejandro Orfila

<p>Sea-level rise induces a permanent loss of land with widespread ecological and economic impacts, most evident in urban and densely populated areas. The eventual coastline retreat combined with the action of waves and storm surges will end in more severe damages over coastal areas. These effects are expected to be particularly significant over islands, where coastal zones represent a relatively larger area vulnerable to marine hazards.</p><p>Managing coastal flood risk at regional scales requires a prioritization of resources and socioeconomic activities along the coast. Stakeholders, such as regional authorities, coastal managers and private companies, need tools that help to address the evaluation of coastal risks and criteria to support decision-makers to clarify priorities and critical sites. For this reason, the regional Government of the Balearic Islands (Spain) in association with the Spanish Ministry of Agriculture, Fisheries and Environment has launched the Plan for Climate Change Coastal Adaptation. This framework integrates two levels of analysis. The first one relates with the identification of critical areas affected by coastal flooding and erosion under mean sea-level rise scenarios and the quantification of the extent of flooding, including marine extreme events. The second level assesses the impacts on infrastructures and assets from a socioeconomic perspective due to these hazards.</p><p>In this context, this paper quantifies the effects of sea-level rise and marine extreme events caused by storm surges and waves along the coasts of the Balearic Islands (Western Mediterranean Sea) in terms of coastal flooding and potential erosion. Given the regional scale (~1500 km) of this study, the presented methodology adopts a compromise between accuracy, physical representativity and computational costs. We map the projected flooded coastal areas under two mean sea-level rise climate change scenarios, RCP4.5 and RCP8.5. To do so, we apply a corrected bathtub algorithm. Additionally, we compute the impact of extreme storm surges and waves using two 35-year hindcasts consistently forced by mean sea level pressure and surface winds from ERA-Interim reanalysis. Waves have been further propagated towards the nearshore to compute wave setup with higher accuracy. The 100-year return levels of joint storm surges and waves are used to map the spatial extent of flooding in more than 200 sandy beaches around the Balearic Islands by mid and late 21st century, using the hydrodynamical LISFLOOD-FP model and a high resolution (2 m) Digital Elevation Model.</p>


2012 ◽  
Vol 5 (1) ◽  
pp. 333-349
Author(s):  
T. L. A. Driessen ◽  
M. van Ledden

Abstract. The objective of this paper is to describe the impact of climate change on the Mississippi River flood hazard in the New Orleans area. This city has a unique flood risk management challenge, heavily influenced by climate change, since it faces flood hazards from multiple geographical locations (e.g. Lake Pontchartrain and Mississippi River) and multiple sources (hurricane, river, rainfall). Also the low elevation and significant subsidence rate of the Greater New Orleans area poses a high risk and challenges the water management of this urban area. Its vulnerability to flooding became dramatically apparent during Hurricane Katrina in 2005 with huge economic losses and a large number of casualties. A SOBEK Rural 1DFLOW model was set up to simulate the general hydrodynamics. This improved model includes two important spillways that are operated during high flow conditions. Subsequently, a weighted multi-criteria calibration procedure was performed to calibrate the model for high flows. Validation for floods in 2011 indicates a very reasonable performance for high flows and clearly demonstrates the necessity of the spillways. 32 different scenarios are defined which includes the relatively large sea level rise and the changing discharge regime that is expected due to climate change. The impact of these scenarios is analysed by the hydrodynamic model. Results show that during high flows New Orleans will not be affected by varying discharge regimes, since the presence of the spillways ensures a constant discharge through the city. In contrary, sea level rise is expected to push water levels upwards. The effect of sea level rise will be noticeable even more than 470 km upstream. Climate change impacts necessitate a more frequent use of the spillways and opening strategies that are based on stages. Potential alternatives on how to cope with the flood hazard of this river in the long term, such as river widening and large-scale redistribution of the flow through diversions, are proposed.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Alexis K. Mills ◽  
Peter Ruggiero ◽  
John P. Bolte ◽  
Katherine A. Serafin ◽  
Eva Lipiec

Coastal communities face heightened risk to coastal flooding and erosion hazards due to sea-level rise, changing storminess patterns, and evolving human development pressures. Incorporating uncertainty associated with both climate change and the range of possible adaptation measures is essential for projecting the evolving exposure to coastal flooding and erosion, as well as associated community vulnerability through time. A spatially explicit agent-based modeling platform, that provides a scenario-based framework for examining interactions between human and natural systems across a landscape, was used in Tillamook County, OR (USA) to explore strategies that may reduce exposure to coastal hazards within the context of climate change. Probabilistic simulations of extreme water levels were used to assess the impacts of variable projections of sea-level rise and storminess both as individual climate drivers and under a range of integrated climate change scenarios through the end of the century. Additionally, policy drivers, modeled both as individual management decisions and as policies integrated within adaptation scenarios, captured variability in possible human response to increased hazards risk. The relative contribution of variability and uncertainty from both climate change and policy decisions was quantified using three stakeholder relevant landscape performance metrics related to flooding, erosion, and recreational beach accessibility. In general, policy decisions introduced greater variability and uncertainty to the impacts of coastal hazards than climate change uncertainty. Quantifying uncertainty across a suite of coproduced performance metrics can help determine the relative impact of management decisions on the adaptive capacity of communities under future climate scenarios.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3090
Author(s):  
Sergio B. Jiménez-Hernández ◽  
Ofelia Pérez Montero ◽  
Eustorgio Meza ◽  
Yunior R. Velázquez ◽  
Juan R. Castellanos ◽  
...  

This paper presents a coastal migration index (CMI) useful for decision-making in the current scenario of sea-level rise (SLR) due to climate change. The CMI includes coastal human population density, degree of urbanization, and coastal-flooding penetration. Quantitative and qualitative statistical techniques and the geographic information system ArcGIS View 9.0 were used. Further, a panel of fifteen international experts in coastal management issues was consulted to establish and validate the CMI. Results led to three index components based on 22 indicators. CMI was applied in the state of Tamaulipas, Mexico and in Santiago de Cuba province, Cuba. According to CMI estimates, the risk levels associated with SLR for human settlements analyzed in Mexico and Cuba were 5.3% and 11.0%, respectively. The most severely affected communities will require resettlement. Meanwhile, the CMI determined that 15.8% of the Mexican territory studied will be able to withstand the effects of SLR through the management of engineering works that will protect human settlements. The CMI determined that 79.0%, in the case of Tamaulipas, as well as 89.0% of the Cuban territory, will not require new policies or guidelines to promote conservation and protection of coastal natural resources. Lastly, the method used allowed for creation of a CMI stoplight map useful to coastal decision-makers to adopt sound management actions.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Faming Wang ◽  
Xiaoliang Lu ◽  
Christian J. Sanders ◽  
Jianwu Tang

AbstractCoastal wetlands are large reservoirs of soil carbon (C). However, the annual C accumulation rates contributing to the C storage in these systems have yet to be spatially estimated on a large scale. We synthesized C accumulation rate (CAR) in tidal wetlands of the conterminous United States (US), upscaled the CAR to national scale, and predicted trends based on climate change scenarios. Here, we show that the mean CAR is 161.8 ± 6 g Cm−2 yr−1, and the conterminous US tidal wetlands sequestrate 4.2–5.0 Tg C yr−1. Relative sea level rise (RSLR) largely regulates the CAR. The tidal wetland CAR is projected to increase in this century and continue their C sequestration capacity in all climate change scenarios, suggesting a strong resilience to sea level rise. These results serve as a baseline assessment of C accumulation in tidal wetlands of US, and indicate a significant C sink throughout this century.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jean-François Legeais ◽  
Benoît Meyssignac ◽  
Yannice Faugère ◽  
Adrien Guerou ◽  
Michaël Ablain ◽  
...  

It is essential to monitor accurately current sea level changes to better understand and project future sea level rise (SLR). This is the basis to support the design of adaptation strategies to climate change. Altimeter sea level products are operationally produced and distributed by the E.U. Copernicus services dedicated to the marine environment (CMEMS) and climate change (C3S). The present article is a review paper that intends to explain why and to which extent the sea level monitoring indicators derived from these products are appropriate to develop adaptation strategies to SLR. We first present the main key scientific questions and challenges related to SLR monitoring. The different processing steps of the altimeter production system are presented including those ensuring the quality and the stability of the sea level record (starting in 1993). Due to the numerous altimeter algorithms required for the production, it is complex to ensure both the retrieval of high-resolution mesoscale signals and the stability of the large-scale wavelengths. This has led to the operational production of two different sea level datasets whose specificities are characterized. We present the corresponding indicators: the global mean sea level (GMSL) evolution and the regional map of sea level trends, with their respective uncertainties. We discuss how these products and associated indicators support adaptation to SLR, and we illustrate with an example of downstream application. The remaining gaps are analyzed and recommendations for the future are provided.


2018 ◽  
Vol 29 ◽  
pp. 31-40
Author(s):  
Hadikusumah

Study on mean sea level (MSL) rise has been done on tide data at some locations in the Western Indonesia. To account the effect of climate change, air temperature analyses from some weather stations are also performed. The results showed that air temperature has changed between 0.0 to 0.44°C per ten years. The sea level analysis showed that mean sea level at Western Indonesia rise between 3.10 to 9.27 mm per year. Based on the results, the prediction on mean sea level change in the years of 2000, 2030, 2050 and 2100 for Cirebon location are 17 cm, 39 cm, 55 cm, and 92 cm, respectively.


2021 ◽  
Author(s):  
SA Stephens ◽  
RG Bell ◽  
Judith Lawrence

© 2017 by the authors. Coastal hazards result from erosion of the shore, or flooding of low-elevation land when storm surges combine with high tides and/or large waves. Future sea-level rise will greatly increase the frequency and depth of coastal flooding and will exacerbate erosion and raise groundwater levels, forcing vulnerable communities to adapt. Communities, local councils and infrastructure operators will need to decide when and how to adapt. The process of decision making using adaptive pathways approaches, is now being applied internationally to plan for adaptation over time by anticipating tipping points in the future when planning objectives are no longer being met. This process requires risk and uncertainty considerations to be transparent in the scenarios used in adaptive planning. We outline a framework for uncertainty identification and management within coastal hazard assessments. The framework provides a logical flow from the land use situation, to the related level of uncertainty as determined by the situation, to which hazard scenarios to model, to the complexity level of hazard modeling required, and to the possible decision type. Traditionally, coastal flood hazard maps show inundated areas only. We present enhanced maps of flooding depth and frequency which clearly show the degree of hazard exposure, where that exposure occurs, and how the exposure changes with sea-level rise, to better inform adaptive planning processes. The new uncertainty framework and mapping techniques can better inform identification of trigger points for adaptation pathways planning and their expected time range, compared to traditional coastal flooding hazard assessments.


2020 ◽  
Author(s):  
Marta Marcos ◽  
Angel Amores

<p>For how long low-elevation coastal areas will be habitable under the effects of mean sea-level rise and marine extreme hazards? Mean sea-level rise, despite having a global origin, has severe local coastal impacts, as it raises the baseline level on top of which extreme storm surges and wind-waves reach the coastlines and, consequently, increases coastal exposure. In this presentation we will show coastal modelling exercises, fed with regionalised climate information of mean sea level and marine extremes, and applied in different environments that include sandy beaches and atoll islands. The outputs are aimed at anticipating the potential impacts of the dominant drivers in terms of land loss, coastal flooding and erosion. Our examples will be focusing on islands, for which the effects of increased coastal exposure are relatively larger, where local economy is often linked to coastal activities and retreat and migration are hampered by the limited land availability.</p>


Sign in / Sign up

Export Citation Format

Share Document